uvloop —— 超级快的 Python 异步网络框架

简介:

简短介绍

asyncio是遵循Python标准库的一个异步 I/O框架.在这篇文章里,我将介绍 uvloop: 可以完整替代asyncio事件循环.uvloop是用Cython写的,基于 libuv.

uvloop 使得 asyncio 更快. 实际上,比nodejs,gevent,以及其他任何Python异步框架至少快两倍 .uvloop asyncio 基于性能的测试接近于Go程序.

asyncio 和 uvloop

asyncio 模块, 是在 PEP 3156引入的, 是一个集合,包含网络传输, 协议, 和抽象的流, 带有可插拔的事件循环. 事件循环是asyncio的核心.它提供如下API:

  • 调用方法的调度
  • 通过网络传输数据
  • 执行 DNS 查询,
  • 处理 OS 操作系统信号
  • 对创建服务器和连接进行封装
  • 子进程异步处理

目前 uvloop 只支持 *nix 平台和 Python 3.5。

uvloop 是 Python 内建的 asyncio 事件循环的替代品,你可以通过 pip 来安装:

 
 
  1. $ pip install uvloop 

在你的 asyncio 代码中使用 uvloop 非常简单:

 
 
  1. import asyncio 
  2. import uvloop 
  3. asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) 

上面的代码片段让 asyncio.get_event_loop() 返回一个 uvloop 的实例。

你还可以显式的创建一个uvloop实例,通过调用uvloop.new_event_loop()。

体系结构

uvloop是用Cython编写的,并建立在libuv之上。

libuv是一种高性能的、跨平台异步的 I/O 类库,nodejs也使用到了它。由于nodejs是如此的广泛和流行,可以知道libuv是快速且稳定的。

uvloop 实现了所有的asyncio 事件循环APIs。高级别的Python对象包装了低级别的libuv 结构体和函数方法。 继承可以使得代码保持DRY(不要重复自己),并确保任何手动的内存管理都可以与libuv的原生类型的生命周期保持同步。

基准测试

与其它实现相比,为了检测uvloop栈性能,我们创建了toolbench基准测试,用于标准的TCP和UNIX套接字I/O,和HTTP协议性能的基准 。

基准测试服务器运行在一个包含外部负载生成工具 (wrk HTTP 基准测试)的Docker容器内,它测试请求吞吐量与延迟。

这篇博客中所有的基准测试都运行于Intel Xeon CPU E5-1620 v2 @ 3.70GHz的 Ubuntu Linux系统.我们使用的是Python 3.5,所有服务器都是单核. 此外,Go代码中使用了GOMAXPROCS=1 ,nodejs没有使用集群,并且所有的Python服务器都是单线程.每一个基准测试集都设置了TCP_NODELAY标识。

在Mac OS X上的基准报告结果也很相似。

TCP

这个基准测试使用不同的消息数目对一个简单的回显服务器的性能进行了测试。我们分别使用了1, 10, 和100 KiB 的包。并发级别是10。每一个基准运行了30秒。

可以点击这里查看完整的TCP基准报告。

每个位置的一些意见:

  1. asyncio-streams。 asyncio 和其内置的纯Python实现的事件循环。在这个基准测试中,我们测试了高级别的流的抽象的性能。我们使用asyncio.create_server()来创建一个服务器,把一对(reader, writer) 传递给客户端协同程序.
  2. tornado。 这个服务器实现了一个非常简单的Tornado 协议,它能够把收到的消息立即回复回去。
  3. curio-streams。 Curio是Python aio 库上的新成员。 与asyncio-streams类似,在这个基准测试中,我们测试了curio 流,使用curio.make_streams()来创建了一对(reader, writer),它提供了一些高级的API,如readline()。
  4. twisted。 跟Tornado类似,我们测试了一个最小的回声协议。
  5. curio。这个基准测试测试了curio 套接字的性能:这是一个实现了sock.recv() 和 sock.sendall()紧密循环的协同程序。
  6. uvloop-streams。就如在#2中提到的,这里我们测试了asyncio高级流的性能,只不过这此时基于uvloop。
  7. gevent。在一个紧密循环里通过使用gevent.StreamServer和一个gevent套接字发送接受数据。
  8. asyncio。看起来普通的asyncio非常的快速!跟第2和4点类似,我们测试了一个最小的回声协议,它是使用纯Python的asyncio所实现的。
  9. nodejs。我们使用net.createServer API 在nodejs v4.2.6里测试流的性能。
  10. uvloop。这个基准测试测试了一个最小的回声协议(就如 #2, #4, #8),它是使用基于uvloop的asyncio实现的。 使用1 KiB消息的情况下,uvloop是最快的实现,可以高达每秒钟105,000的请求!使用100 KiB消息的情况下, uvloop的速度可以达到大概2.3 GiB/s。
  11. Go。一个 net.Conn.Read/Write 调用的紧密循环。 Golang 性能跟uvloop非常接近,在10 和100 KiB消息情况下会稍微好一些。

所有的基准测试的代码可以在这里找到。

也可以查看所有的UNIX套接字基准测试结果。

HTTP

最初,我们想要在asyncio和uvloop上针对nodejs和Go进行测试。aiohttp是使用asyncio编写异步HTTP服务器和客户端 最流行的框架。

也可以查看完整的HTTP基准测试报告。

然而,aiohttp 上的性能瓶颈确实其HTTP解析器,它比较慢,因此即使使用的I/O类库再快也没什么卵用。为了让事情更有趣,我们为 http-parser (nodejs的 HTTP 解析器C类库,最初是为Nginx研发的) 创建了一个Python绑定(binding)。这个类库被命名为httptools,并且在Github和PyPI都可以找到。

对于HTTP,所有的基准使用wrk 来生成负载。 并发级别设置为300。每个基准的持续时间为30秒。

令人惊奇的是,纯Python实现的asyncio在高性能的HTTP解析器的帮助下,比使用同样HTTP解析器的nodejs表现的快很多!

Go在1 KiB响应情况下要更快些,但是uvloop和asyncio的组合却在10/100 KiB响应情况下要快很多。使用httptools的asyncio和uvloop的服务质量非常棒,对于Go来说也一样。

不可否认,基于httptools的服务器非常的小巧,而且不像其他实现那样不包含任何路由逻辑。尽管如此,这个基准却演示了uvloop和一个高效实现的协议配合能变得多么快速。

Conclusion

我们可以得出结论, 利用uvloop可以写出在单CPU内核下每秒钟能够发出上万个请求的Python网络代码。 在多内核系统下,可以使用进程池来进一步来改善系统性能。

uvloop 和 asyncio,在加上Python 3.5里 async/await的强大能力,使得使用Python编写高性能的网络代码更容易了。


本文作者:佚名

来源:51CTO

目录
打赏
0
0
0
0
325
分享
相关文章
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
76 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
121 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
企业网络架构安全持续增强框架
企业网络架构安全评估与防护体系构建需采用分层防御、动态适应、主动治理的方法。通过系统化的实施框架,涵盖分层安全架构(核心、基础、边界、终端、治理层)和动态安全能力集成(持续监控、自动化响应、自适应防护)。关键步骤包括系统性风险评估、零信任网络重构、纵深防御技术选型及云原生安全集成。最终形成韧性安全架构,实现从被动防御到主动免疫的转变,确保安全投入与业务创新的平衡。
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
88 14
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
298 9
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
160 15
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
182 4
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
202 7