【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

简介: 【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240724090953394

摘要

我们提出了BoTNet,这是一种概念上简单但功能强大的骨干架构,结合了自注意力机制,用于图像分类、目标检测和实例分割等多个计算机视觉任务。通过仅在ResNet的最后三个瓶颈块中用全局自注意力替换空间卷积,并且没有其他更改,我们的方法显著提高了实例分割和目标检测的基线性能,同时减少了参数,且在延迟方面的开销极小。通过设计BoTNet,我们还指出带有自注意力的ResNet瓶颈块可以视为Transformer块。无需任何额外的技巧,BoTNet在使用Mask R-CNN框架时,在COCO实例分割基准上达到了44.4%的Mask AP和49.7%的Box AP,超过了之前ResNeSt [67]在COCO验证集上发布的单模型和单尺度的最好结果。最后,我们提出了BoTNet设计在图像分类中的简单适应性,生成的模型在ImageNet基准上实现了84.7%的top-1准确率,同时在TPU-v3硬件上的“计算”时间比流行的EfficientNet模型快1.64倍。我们希望这种简单而有效的方法将作为未来自注意力模型研究的强大基线。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

BoTNet(Bottleneck Transformers for Visual Recognition)是一种结合自注意力机制和卷积神经网络的骨干架构,主要用于图像分类、目标检测和实例分割等视觉任务。BoTNet通过在ResNet的最后三个瓶颈块中用全局自注意力层替代空间卷积层,显著提高了基线性能,并减少了参数量,同时保持了较低的延迟。

  1. 瓶颈块与自注意力机制:

    • ResNet瓶颈块:经典的ResNet瓶颈块使用多个3×3的卷积层来提取特征。尽管卷积操作能够有效捕捉局部信息,但对于需要建模长距离依赖关系的任务(如实例分割)存在一定局限。
    • 多头自注意力(MHSA):BoTNet通过用多头自注意力层替代ResNet瓶颈块中的3×3卷积层,来捕捉全局信息。这种替换使得BoTNet不仅能够捕捉局部特征,还能建模图像中的长距离依赖关系,从而更有效地完成复杂的视觉任务。
  2. 架构设计:

    • 混合模型:BoTNet是一种混合模型,结合了卷积和自注意力机制。卷积层用于从大图像中高效地学习抽象和低分辨率的特征图,自注意力层则用于处理和聚合卷积层捕捉到的信息。
    • 具体实现:BoTNet保留了ResNet的大部分架构,仅在最后三个瓶颈块中将3×3卷积层替换为多头自注意力层。这种设计在实例分割任务中显著提升了性能,例如在COCO数据集上,BoTNet在Mask R-CNN框架下实现了44.4%的Mask AP和49.7%的Box AP。
  3. 计算效率与扩展性:

    • 计算效率:尽管自注意力机制的计算和内存需求随着空间维度呈二次方增长,但通过在低分辨率特征图上应用自注意力层,BoTNet有效地控制了计算开销。
    • 扩展性:BoTNet不仅适用于图像分类,还在更高分辨率的图像检测和实例分割任务中表现出色。例如,BoTNet在训练72个epoch后,在更大图像尺寸(1280×1280)上的性能优于ResNet,展示了其良好的扩展性。
  4. 性能表现:

    • COCO实例分割:在COCO实例分割基准上,BoTNet显著提升了基于ResNet的Mask R-CNN性能。例如,与使用ResNet-50的基线相比,BoTNet-50在使用相同超参数和训练配置下,Mask AP提高了1.2%。
    • ImageNet分类:在ImageNet分类任务中,BoTNet在标准训练设置下表现优异,尤其在使用增强的数据增强和更长时间训练时,BoTNet模型的top-1准确率达到了84.7%。
  5. 相对位置编码

    • 相对位置编码:BoTNet采用了相对位置编码,使得自注意力操作能够感知位置,这对于视觉任务尤为重要。这种编码方式不仅考虑内容信息,还能有效关联不同位置的特征,从而提高模型性能。

核心代码


class BoT3(nn.Module):

    def __init__(self, c1, c2, n=1, e=0.5, e2=1, w=20, h=20):  # ch_in, ch_out, number, , expansion,w,h
        super(BoT3, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(
            *[BottleneckTransformer(c_, c_, stride=1, heads=4, mhsa=True, resolution=(w, h), expansion=e2) for _ in
              range(n)])


    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140653663

相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
28天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
81 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
54 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
75 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
109 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
102 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
90 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
机器学习/深度学习 人工智能 算法
深入理解卷积神经网络:从理论到实践
【9月更文挑战第31天】在深度学习的众多模型之中,卷积神经网络(CNN)以其在图像处理领域的出色表现而闻名。本文将通过浅显易懂的语言和直观的比喻,带领读者了解CNN的核心原理和结构,并通过一个简化的代码示例,展示如何实现一个简单的CNN模型。我们将从CNN的基本组成出发,逐步深入到其在现实世界中的应用,最后探讨其未来的可能性。文章旨在为初学者提供一个清晰的CNN入门指南,同时为有经验的开发者提供一些深入思考的视角。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。