【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力

简介: 【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240723152139314

摘要

虽然卷积神经网络(CNNs)中使用自下而上的局部操作符与自然图像的一些统计特性很好地匹配,但这也可能阻止这些模型捕捉上下文的长程特征交互。在这项工作中,我们提出了一种简单且轻量的方法,以更好地在CNNs中利用上下文信息。我们通过引入一对操作符来实现这一目标:聚集(gather),该操作符高效地聚合来自大空间范围的特征响应;激发(excite),将汇集的信息重新分配给局部特征。这些操作符在添加参数数量和计算复杂度方面都很便宜,并且可以直接集成到现有架构中以提高其性能。多个数据集上的实验表明,聚集-激发(gather-excite)操作符可以带来类似于增加CNN深度的好处,但成本仅为其一小部分。例如,我们发现带有聚集-激发操作符的ResNet-50在ImageNet上能够超越其101层的对应模型,而无需额外的可学习参数。我们还提出了一对参数化的聚集-激发操作符,这对进一步提高性能有帮助,并将其与最近引入的挤压-激励网络(Squeeze-and-Excitation Networks)联系起来,并分析这些变化对CNN特征激活统计的影响。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Gather-Excite(简称GE)框架旨在增强卷积神经网络(CNNs)中对上下文的利用能力。它引入了两个主要操作符:gather和excite,这两个操作符协同工作,提高了网络捕获长距离特征交互的能力。

技术原理

1. 动机

传统的卷积神经网络主要使用局部操作符,这些操作符虽然高效,但在捕捉长距离依赖关系方面存在局限性。这是因为它们的感受野是局部的。尽管更深的层理论上具有更大的感受野,但实际上有效感受野要小得多。这一限制妨碍了CNN利用整个图像中分布的上下文信息。

2. Gather操作符 (ξG)

Gather操作符用于从较大的空间范围内聚合特征响应。它通过汇集广泛区域的信息,使网络能够收集上下文信息。这个操作符可以通过不同的池化方法实现,如平均池化,它对指定范围内的特征值进行平均。

3. Excite操作符 (ξE)

Excite操作符将聚合的信息重新分配给局部特征。这种重新分配通过根据聚合的上下文信息重新缩放原始输入特征来实现。Excite操作符使用门控机制(通常是sigmoid函数)来调整输入特征,使其受到聚合上下文的调节。

4. 在CNN中的整合

GE操作符轻量且易于整合到现有的CNN架构中。它们被插入到ResNet等网络的残差块中,就在与恒等分支求和之前。这样的整合提高了网络的表示能力,而不会显著增加计算负担。

实现细节

1. 无参数配对

在基础实现(GE-θ−)中,gather操作符使用平均池化来聚合特征,excite操作符使用sigmoid函数来调整这些聚合。这种方法不引入额外的可学习参数,并且显著提高了性能。

2. 参数化配对

为了进一步增强框架,参数化的gather操作符被引入,通过深度卷积来应用空间滤波到独立通道上。这种方法被称为GE-θ,为gather操作符添加了可学习参数,进一步提高了性能。

性能和优势

  1. ImageNet分类:实验表明,将GE操作符集成到ResNet-50中,其性能优于更深的ResNet-101,展示了上下文利用的效率。

  2. 泛化能力:GE框架在其他架构和任务中也表现出良好的泛化能力,如在MS COCO上的Faster R-CNN目标检测和CIFAR-10/100上的分类任务。

  3. 计算效率:这些操作符计算成本低,不会显著增加网络的参数数量或计算复杂度,适合资源受限的环境。

核心代码

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140637601

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
267 0
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
4月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
22天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
1月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
75 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
109 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
1月前
|
网络安全
捕获网络流量(一)
捕获网络流量(一)
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
110 0
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
3天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
14 2