ODPS问题之什么是Join/Inner Join

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: ODPS问题之什么是Join/Inner Join

问题一:综合建模中的模型网络主要包括哪几个部分?

综合建模中的模型网络主要包括哪几个部分?


参考回答:

综合建模中的模型网络主要包括四个部分:隐形特征交叉(DNN网络)、显性特征交叉(CIN+FM)、黑产异常行为识别(TextCNN+TF)。

其中,DNN网络用于处理离线特征、端上实时特征以及部分特征对应的词表;CIN+FM用于捕捉特征之间的交叉信息;TextCNN+TF则用于捕捉机器操作在行为操作上的相似性并刻画行为序列整体特征。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/633927



问题二:什么是Join/Inner Join?

什么是Join/Inner Join?


参考回答:

Join/Inner Join用于找出两个表中共同的部分。它的工作原理是基于join条件,返回在左表和右表中具有匹配列值的行。需要注意的是,在进行Join/Inner Join操作前,一定要自查左右表是否有重复数据,否则最终重复的结果会以笛卡尔积的数量增长。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/633928



问题三:如何优化Join/Inner Join的性能?

如何优化Join/Inner Join的性能?


参考回答:

优化Join/Inner Join性能的方法之一是先从每张表中选出子集再进行join操作。例如,通过WHERE子句限制ds字段的值来选出特定日期的数据子集,然后再进行join。另一种优化方法是利用mapjoin,将小表加载到执行JOIN操作的程序的内存中,从而避免shuffle过程,提高性能。但需要注意的是,mapjoin仅适用于小表,并且表数据占用的总内存不能超过512MB。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/633929



问题四:什么是Left Join?

什么是Left Join?


参考回答:

Left Join首先取左表(Table A)和右表(Table B)的行的笛卡尔积,并返回左表的所有行以及右表中符合关联条件的行。如果左表中的某一行在右表中没有找到匹配的行,那么结果集中该行的右表列值将为NULL。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/633930



问题五:为什么选择Left Join而不是Right Join?

为什么选择Left Join而不是Right Join?


参考回答:

Left Join和Right Join在逻辑上没有本质区别,只是处理左表和右表的方式不同。在实际应用中,为了保持代码的一致性和可读性,建议定义好左表后都利用Left Join来执行。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/633931

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
1
1
0
191
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
58 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
69 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
122 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
2月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
75 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
揭示Transformer周期建模缺陷!北大提出新型神经网络FAN,填补周期性特征建模能力缺陷
北京大学研究团队发现,Transformer等主流神经网络在周期特征建模方面存在缺陷,如记忆数据模式而非理解内在规律,导致泛化能力受限。为此,团队提出基于傅里叶分析的Fourier Analysis Network(FAN),通过显式建模周期性特征,提升模型的理解和预测能力,减少参数和计算量,并在多个实验中验证其优越性。论文链接:https://arxiv.org/pdf/2410.02675.pdf
62 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
44 1
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
73 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
110 17
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
78 10
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等