K-means算法:基础知识、原理与案例分析

简介: 8月更文挑战第24天

一、引言
在大数据时代,数据挖掘技术已成为各行业关注的焦点。聚类分析作为数据挖掘的一个重要分支,旨在将无标签的数据分为若干个类别,使同类数据间的相似度较高,不同类数据间的相似度较低。K-means算法作为一种经典的聚类算法,因其简洁、高效的特点,广泛应用于数据分析、图像处理、机器学习等领域。
二、K-means算法基础知识image.png

  1. 聚类分析
    聚类分析是一种无监督学习方法,其主要目的是将数据集划分为若干个类别,使得同类数据间的相似度较高,不同类数据间的相似度较低。聚类分析广泛应用于数据分析、图像处理、生物信息学等领域。K-means算法是一种迭代的聚类方法,其目标是将n个数据对象划分为K个聚类(Cluster),其中每个聚类由一组相似的对象组成,而不同聚类之间的对象差异尽可能大。这里的“相似”通常指数据点之间的距离度量,最常用的是欧几里得距离。

三、K-means算法原理:
K-means算法主要包括以下几个步骤:

初始化:随机选择K个数据点作为初始聚类中心。
分配:将每个数据点分配给最近的聚类中心,形成K个簇。
更新:重新计算每个簇的质心(即簇内所有点的均值)作为新的聚类中心。
判断收敛:如果聚类中心没有显著变化或达到预设的最大迭代次数,则算法结束;否则,返回步骤2继续迭代。
2.3 挑战与优化
初始化敏感性:K-means对初始聚类中心的选择敏感,不良的初始化可能导致次优解。改进方法如K-means++通过概率选择初始点,提高了聚类质量。
选择K值:K的选择直接影响聚类效果,常用方法有肘部法则、轮廓系数等评估指标。
处理异常值:异常值可能严重影响聚类结果,可以通过数据预处理或采用更鲁棒的变体如K-medoids来缓解。
image.png

四、K-means算法架构

  1. 数据预处理
    (1)数据清洗:去除异常值、缺失值等;
    (2)数据标准化:将数据转换为无量纲的数值,便于计算距离;
    (3)特征选择:选取具有代表性的特征进行聚类。
  2. K-means算法实现
    (1)选择合适的距离度量:欧氏距离、曼哈顿距离等;
    (2)初始化聚类中心:随机选择、K-means++等;
    (3)迭代计算:分配样本、更新聚类中心;
    (4)算法优化:加速收敛、避免局部最优等。
    五、案例分析
    以下以一个实际案例为例,介绍K-means算法的应用。
  3. 案例背景
    某电商企业拥有大量用户数据,为提高用户满意度,企业希望通过聚类分析了解用户群体特征,进而制定有针对性的营销策略。
  4. 数据预处理
    (1)数据清洗:去除异常值、缺失值;
    (2)数据标准化:将用户数据转换为无量纲的数值;
    (3)特征选择:选取用户年龄、性别、消费金额、购买频次等特征。
  5. K-means算法应用
    (1)确定聚类个数K:根据业务需求,将用户分为4个类别;
    (2)初始化聚类中心:采用K-means++算法;
    (3)迭代计算:分配样本、更新聚类中心;
    (4)算法优化:采用二分K-means算法加速收敛。
  6. 结果分析
    经过K-means算法聚类,得到以下四类用户群体:
    (1)高消费、高频次购买的用户群体;
    (2)中消费、中频次购买的用户群体;
    (3)低消费、低频次购买的用户群体;
    (4)年轻用户群体。
    根据聚类结果,企业可以针对不同用户群体制定相应的营销策略,提高用户满意度。image.png

六、总结
本文介绍了K-means算法的基础知识、原理及其在实际案例中的应用。作为一种经典的聚类算法,K-means算法在数据分析、图像处理、机器学习等领域具有广泛的应用价值。通过对K-means算法的研究,有助于我们更好地理解和应用聚类分析方法,为各行业提供有力支持。然而,K-means算法也存在一定的局限性,如对初始聚类中心敏感、可能收敛到局部最优解等。因此,在实际应用中,我们需要根据具体问题选择合适的算法,并对其进行优化。

下面是一个使用Python语言和scikit-learn库实现的K-means算法的简单案例代码。这个例子将演示如何使用K-means算法对一组数据进行聚类,并展示聚类结果。
首先,确保你已经安装了scikit-learn库。如果没有安装,可以使用以下命令安装:

pip install scikit-learn

以下是完整的案例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
# 生成模拟数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(X_scaled)
# 输出聚类中心
print("Cluster centers:\n", kmeans.cluster_centers_)
# 绘制数据点和聚类中心
plt.scatter(X_scaled[pred_y == 0, 0], X_scaled[pred_y == 0, 1], s=50, c='blue', label='Cluster 1')
plt.scatter(X_scaled[pred_y == 1, 0], X_scaled[pred_y == 1, 1], s=50, c='red', label='Cluster 2')
plt.scatter(X_scaled[pred_y == 2, 0], X_scaled[pred_y == 2, 1], s=50, c='green', label='Cluster 3')
plt.scatter(X_scaled[pred_y == 3, 0], X_scaled[pred_y == 3, 1], s=50, c='cyan', label='Cluster 4')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=250, marker='*', c='yellow', label='Centroids')
plt.title('Clusters of data points')
plt.legend()
plt.show()

这段代码做了以下几件事情:

  1. 使用make_blobs函数生成模拟数据集,包含300个样本和4个中心。
  2. 使用StandardScaler对数据进行标准化处理,这是K-means算法的一个良好实践。
  3. 创建KMeans对象,设置聚类中心数量为4,并使用k-means++初始化方法来选择初始中心。
  4. 使用fit_predict方法对数据进行聚类,并得到每个样本的聚类标签。
  5. 打印出聚类中心。
  6. 使用matplotlib库绘制数据点和聚类中心,不同颜色的点代表不同的聚类结果。
    运行这段代码,你将看到一个散点图,展示了数据点的聚类结果以及每个簇的中心。
相关文章
|
9天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
17天前
|
算法
算法设计与分析作业
这篇文章是关于算法设计与分析的作业,其中包含了两个算法实现:一个是使用分治算法实现的十进制大整数相乘(包括加法、减法和乘法函数),并进行了正确性和健壮性测试;另一个是使用快速排序思想实现的分治查找第K小元素的程序,并分析了其平均和最坏时间复杂度。
算法设计与分析作业
|
16天前
|
前端开发 算法 JavaScript
React原理之Diff算法
【8月更文挑战第24天】
|
13天前
|
编解码 算法 图形学
同一路RTSP|RTMP流如何同时回调YUV和RGB数据实现渲染和算法分析
我们播放RTSP|RTMP流,如果需要同时做渲染和算法分析的话,特别是渲染在上层实现(比如Unity),算法是python这种情况,拉两路流,更耗费带宽和性能,拉一路流,同时回调YUV和RGB数据也可以,但是更灵活的是本文提到的按需转算法期望的RGB数据,然后做算法处理
|
5天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
17天前
|
算法 C++
第一周算法设计与分析 H : 括号匹配
这篇文章介绍了解决算法问题"括号匹配"的方法,通过使用栈来检查给定字符串中的括号是否合法匹配,并提供了相应的C++代码实现。
|
9天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
10天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
11天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。