Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

房价问题已经成为中国社会关注的焦点问题。现阶段中国房价为什么上涨过快并始终成为社会关注的焦点等问题;认为未来一段时间内中国房价仍然会总体上涨,房价上涨压力会向二线城市特别是中西部地区的二线城市转移.为此,房地产调控应针对房价地区分化现象,实施差异化的住房政策;针对住房需求结构变化,优化住房供给结构;针对住房市场交易结构变化,调整房地产调控的重点领域。

本项目通过贝叶斯岭回归模型综合各种因素建模房价预测模型,并通过K折交叉验证进行房价模型的评估。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

CRIM

城镇人均犯罪率

2

ZN

住宅用地所占比例

3

INDUS

城镇中非住宅用地所占比例

4

CHAS

CHAS虚拟变量,用于回归分析

5

NOX

环保指数

6

RM

每栋住宅的房间数

7

AGE

1940年以前建成的自住单位的比例

8

DIS

距离5个波士顿的就业中心的加权距离

9

RAD

距离高速公路的便利指数

10

TAX

每一万美元的不动产税率

11

PRTATIO

城镇中的教师学生比例

12

B

城镇中的黑人比例

13

LSTAT

地区中有多少房东属于低收入人群

14

MEDV

自住房屋房价中位数

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有14个变量,数据中无缺失值,共506条数据。

关键代码:

image.png

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 房屋房价的趋势图

用Matplotlib工具的plot()方法绘制折线图:

image.png

4.2 房屋房价分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

从上图可以看出,房屋房价主要分布在115~25之间。

 

4.3 住宅房间数分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

从上图可以看出,住宅房间数主要分布在5.5~7

4.4 便利指数与房屋房价的散点图与拟合线

seaborn工具的lmplot ()方法绘制散点图与拟合线:

 

image.png

从上图可以看出,距离高速公路的便利指数和房屋房价不呈现线性关系。

4.5 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

image.png

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

image.png

6.构建贝叶斯岭回归模型

主要使用BayesianRidge算法和K折交叉验证,用于目标回归。 

6.1构建模型

编号

模型名称

参数

1

贝叶斯岭回归模型

n_iter=300

2

tol=0.001

 

6.2模型特征权重值直方图

image.png

从上图可以看到,特征的权重值主要集中在-0.5~1之间。 

 

7.模型评估

7.1评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

训练集

贝叶斯岭回归模型

  5折交叉验证得分

0.7115

 

模型名称

指标名称

指标值

测试集

贝叶斯岭回归模型

  R方

0.6639

均方误差

24.6471

可解释方差值

0.666

平均绝对误差

3.1251

从上表可以看出,R方0.6639可解释方差值0.666模型效果一般,可根据需要进行进一步的优化。

关键代码如下:

image.png

7.2 真实值与预测值对比图

image.png

从上图可以看出真实值和预测值波动基本一致。

 

8.结论与展望

综上所述,本文采用了贝叶斯岭回归算法来构建回归模型,并应用5折交叉验证进行模型评估,房价影响因素比较多,本项目进行初步的探讨、研究。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1wQcqxwNi2xSv7wGbe-rVLA 
提取码:8zlk
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
22天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
22天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
24天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
104 63
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
10天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
机器学习/深度学习 算法 大数据
蓄水池抽样算法详解及Python实现
蓄水池抽样是一种适用于从未知大小或大数据集中高效随机抽样的算法,确保每个元素被选中的概率相同。本文介绍其基本概念、工作原理,并提供Python代码示例,演示如何实现该算法。
31 1
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
DataWorks