面向金融场景的大模型 RAG 检索增强解决方案

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本方案为您介绍,如何使用人工智能平台 PAI 构建面向金融场景的大模型 RAG 检索增强解决方案。

一、概述

在现代信息检索领域,检索增强生成(Retrieval-Augmented Generation, RAG)模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。在特定场景下,例如金融等领域,用户通常需要精确且相关的信息来支持决策。传统生成模型虽然在自然语言理解和生成方面表现良好,但在专业知识的准确性上可能有所不足。RAG 模型通过将检索与生成相结合,能有效提升回答的准确性和上下文相关性。本方案为您介绍,如何使用人工智能平台 PAI 构建面向金融场景的大模型 RAG 检索增强解决方案。
1. 使用 PAI-Designer 构建知识库
您可以参照数据格式要求准备,使用 PAI-Designer 构建相应的检索知识库。
2. 使用 PAI-LangStudio 进行模版构建
您在 LangStudio 中使用预置的 RAG 模版进行定制化,创建适合具体应用的模板。
3. 使用 PAI-Langstudio 构建在线应用
LangStudio 提供了用户友好的界面,使用户能够轻松提交查询并获取答案。您可以使用创建好的模板构建符合业务需求的在线应用。

二、前置准备

在开始执行操作前,请确认您已完成以下准备工作:

  • 已开通 PAI 后付费,并创建默认工作空间,详情请参见开通PAI并创建默认工作空间。【https://x.sm.cn/6h97sdG】
  • 已创建 OSS 存储空间(Bucket),用于存储训练数据。关于如何创建存储空间,详情请参见控制台创建存储空间。【https://x.sm.cn/F7x7u9x】
  • 已开通 Milvus 数据库,用于构建指数库的向量存储,详情请参见快速创建milvus实例【https://x.sm.cn/k2ozRD】

1.准备数据集

在使用 PAI-Designer 构建知识库的过程中,您首先需要根据金融领域的需求,准备并整理好适合的数据集。这些数据往往涉及到该领域的专业内容,需确保数据的准确性和完整性。PAI-Designer 提供了一套便捷的工具和接口,帮助用户轻松导入和管理这些数据。在本解决方案中,我们以金融为例,展示使用 PDF 作为原始数据,使用 PAI-Designer 构建知识库的的步骤。
您需要确保数据格式符合 PAI-Designer 的要求,例如 PDF 格式。可以通过对领域文档进行预处理和格式化,提取其中的关键信息。
数据示例
以下给出金融领域的数据的示例,格式为 pdf,主要内容为公开新闻网站上的新闻报道,用户可以根据需要准备自己的数据:
image.png
image.png

该示例数据集已经放置于公开的 oss bucket 中,可以使用 wget 下载,下载后请用户将数据上传到自己的 oss bucket 中,以供下一步使用:

wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/solutions/rag/data/%E9%87%91%E8%9E%8D%E6%96%B0%E9%97%BBpdf.zip

2. 部署 LLM 和 Embedding 模型

  1. 前往快速开始 > ModelGallery,【https://x.sm.cn/17lBfMA】分别按场景选择**大语言模型**及 Embedding 分类,并部署指定的模型。本文以通义千问2.5-7B-Instructbge-large-zh-v1.5 通用向量模型为例进行部署。请务必选择使用指令微调的大语言模型(名称中包含“Chat”或是“Instruct”的模型),Base 模型无法正确遵循用户指令回答问题。
    image.png
    image.png

  2. 前往任务管理,单击已部署的服务名称,在服务详情页签下单击查看调用信息,分别获取前面部署的 LLM 和 Embedding 模型服务的 VPC 访问地址和 Token,供后续创建连接时使用。
    image.png
    image.png

3.创建 LLM 链接

  1. 进入LangStudio,选择工作空间后,在连接管理页签下单击新建连接,进入应用流创建页面。
  2. 创建通用 LLM 模型服务连接。其中 base_url 和 api_key 分别对应【1. 部署LLM和Embedding模型中】 LLM 的 VPC 访问地址和 Token。
    image.png

4.创建 Embedding 模型服务连接

【3. 创建 LLM 链接】,创建通用 Embedding 模型服务连接。其中 base_url 和 api_key 分别对应【2. 部署 LLM 和 Embedding 模型】中 Embedding 模型的 VPC 访问地址和 Token。
image.png

5. 创建向量数据库连接

【3. 创建 LLM 链接】,创建 Milvus 数据库连接。
image.png

关键参数说明:

  • uri:Milvus 实例的访问地址,即http://,Milvus 内网访问地址如下:
    image.png

则 uri 为http://c-b1c5222fba****-internal.milvus.aliyuncs.com。

  • token:登录 Milvus 实例的用户名和密码,即:。
  • database:数据库名称,本文使用默认数据库default。

三、使用 PAI-Designer 构建知识库

使用 PAI-Designer 构建知识库索引工作流主要包含以下几个步骤:

  1. 使用数据源读取组件,读取 OSS 中的数据。
  2. 使用文本解析分块组件,对文本进行分块。
  3. 使用向量生成组件,对分块后的文本进行向量化。
  4. 使用索引存储组件,将向量化后的文本存储到向量数据库。
    image.png

PAI-Designer 工作流串联示例

您可以打开 PAI-Designer,选择 LLM 大语言模型中的检索增强生成构建自己的知识库。
image.png

进入工作流后,您会看到下面的工作流,接下来依次介绍各个模块的作用以及需要填写的参数。

RAG 读取 OSS 数据

选择存储数据的 OSS Bucket,确保 Bucket 中已经保存好相关的文档数据(可以为 pdf/csv 格式)。
image.png

image.png

RAG 文本解析分块

对输入的文件进行分块处理,填入块大小和块重叠大小的参数,并选择 OSS Bucket 保存分块完成的数据。
image.png

RAG 文本向量生成

使用 embedding 模型,对分块完成的数据进行向量化并存储,便于后续的检索操作。
image.png

RAG 索引构建

使用先前创建的 milvus 数据库,存储已经生成的文档向量。其中向量数据库选择自己创建的数据库,为存储的文档向量取一个名称,填入集合/表名称中;相似度度量可以选择点积、余弦、欧几里得的方式;并选择一个 OSS Bucket 保存 RAG 的索引。
image.png

image.png

四、使用 PAI-LangStudio 进行模版构建

PAI-LangStudio 是一个人工智能应用的开发平台,采用直观的交互式环境,简化了企业级大模型应用的开发流程。在开发和设计大模型应用时,可以使用 PAI-LangStudio 进行模版构建。此外,PAI-LangStudio 配合一键部署EAS,使得高质量应用得以迅速、无缝地部署至生产环境。以下介绍使用 PAI-LangStudio 进行模版构建的过程

新建应用流

  1. 进入 LangStudio,选择工作空间后,在应用流页签下单击新建应用流,进入应用流创建页面。
  2. 选择从模板新建,并在选择 RAG 模板后填入应用流名称,在 OSS Bucket 中选择存储应用流的路径。
    image.png

配置应用流

创建应用流后会进入应用流详情界面,左图中有四个节点,分别对应了不同的功能。

  1. rewrite_question 节点通过对用户问题的重写以提升问题质量,其中需要用户在基础配置中选择 connection 为【前置准备3. 创建 LLM 连接】中创建好的连接。
    image.png

  2. retrieve 节点通过向量数据库召回和问题相关的文档内容,Vector Store 需要用户选择【前置准备5. 创建向量数据库】中创建好的数据库以及在 index_name 中填入使用 【PAI-Designer 构建知识库-RAG 索引构建】中填入的集合/表名;Embedding Model 中需要用户选择【前置准备4. 创建Embedding模型服务连接】中创建的连接。
    image.png

  3. threshold_filter 节点对 retrieve 节点召回的文档进行过滤,填入的 threshold 值是对召回文档和查询问题相似度过滤的条件,threshold 越大,则过滤掉越多召回的相似度低的文档。
    image.png

  4. generate_answer 节点根据召回和过滤后的文档,回答问题。用户需要在基础配置中选择【前置准备3. 创建LLM连接】中创建好的 LLM 连接。
    image.png

五、使用 PAI-LangStudio 构建在线应用

  1. 配置完上述流程后,点击启动运行时,并选择机型,配置专有网络链接,部署 RAG 应用。
    image.png

image.png

  1. 运行时启动后,点击对话按钮,在左侧对话框中输入想问的问题,与大语言模型开始交流对话。
    image.png

    六、案例对比

    以下给出金融和医疗两个领域,使用和不使用 RAG 解决特定任务的案例对比。红色部分表示大模型回答有事实性错误,或者不够具体精确,绿色部分表示使用 RAG 得到的对应正确回复。

    任务一:投资风险分析

    问题:请根据最新的新闻报道,分析美国科技行业目前投资风险性如何,是否存在泡沫,给出是或否的具体回答。
    image.png
    image.png

任务二:行业趋势分析

问题:请根据最新的新闻报道,给出房地产相关行业是否乐观的判断。

image.png
image.png

任务三:贸易情况分析

问题:我国近10个月来货物贸易进出口情况如何?
image.png

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
SQL 人工智能 分布式计算
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
|
14天前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
18天前
|
人工智能 数据挖掘 API
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
R2R 是一款先进的 AI 检索增强生成平台,支持多模态内容处理、混合搜索和知识图谱构建,适用于复杂数据处理和分析的生产环境。
105 3
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
|
10天前
|
数据采集 运维 数据可视化
阿里云多模态数据信息提取解决方案深度评测与优化建议
本文基于多模态数据信息提取方案的部署体验,深入剖析其在操作界面、部署文档、函数模板、官方示例及实用性与移植性等方面的表现,并提出针对性改进建议。优化建议涵盖模型性能对比、实时校验、故障排查手册、代码注释扩充、行业专属示例集等,旨在提升方案的易用性、功能性和通用性,助力企业在复杂数据处理中高效挖掘价值信息,推动数字化转型。
39 9
|
27天前
|
存储 人工智能 数据库
面向医疗场景的大模型 RAG 检索增强解决方案
本方案为您介绍,如何使用人工智能平台 PAI 构建面向医疗场景的大模型 RAG 检索增强解决方案。
|
2月前
|
存储 自然语言处理 算法
“无”中生有:基于知识增强的RAG优化实践
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
485 20
“无”中生有:基于知识增强的RAG优化实践
|
5天前
|
存储 人工智能 安全
面向法律场景的大模型 RAG 检索增强解决方案
检索增强生成模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。以人工智能平台 PAI 为例,为您介绍在云上使用一站式白盒化大模型应用开发平台 PAI-LangStudio 构建面向法律场景的大模型 RAG 检索增强解决方案,应用构建更简便,开发环境更直观。此外,PAI 平台同样发布了面向医疗、金融和教育领域的 RAG 解决方案。
|
2月前
|
存储 边缘计算 自然语言处理
25 个值得关注的检索增强生成 (RAG) 模型和框架
大型语言模型(LLM)如GPT-4在自然语言处理(NLP)领域展现了卓越能力,但也存在知识截止、静态知识库和内存限制等局限。检索增强生成(RAG)通过集成检索机制,允许LLM动态访问和整合外部数据源,提高了生成响应的准确性、相关性和时效性。本文深入探讨了25种先进的RAG变体,每种变体都旨在优化检索和生成过程的特定方面,涵盖成本限制、实时交互和多模态数据集成等问题,展示了RAG在提升NLP能力方面的多功能性和潜力。
100 4
25 个值得关注的检索增强生成 (RAG) 模型和框架
|
2月前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
80 11
|
3月前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】