基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

简介: 垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。

一、介绍

垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。

二、系统效果图片展示

img_05_10_18_48_12

img_05_10_18_48_19

img_05_10_18_49_34

三、演示视频 and 完整代码 and 远程安装

地址:https://www.yuque.com/ziwu/yygu3z/lwutss28pac54l3n

四、ResNet50算法

ResNet50是一种深度残差网络(Residual Network),由微软研究院的Kaiming He等人提出。它通过引入残差学习解决了深层网络训练中的梯度消失和梯度爆炸问题,使得构建和训练非常深的网络成为可能。ResNet50包含50层网络结构,其中49层为卷积层,最后一层为全连接层。它利用残差块(残差单元)来构建网络,每个残差块包含3层卷积结构,通过跳跃连接(shortcut connections)将输入直接添加到块的输出,从而允许梯度直接流向前面的层,有效缓解了梯度消失问题。

ResNet50网络结构主要包括Identity Block和Conv Block两种残差块。Identity Block的输入和输出维度相同,可以串联多个,直接相加,维度不变。而Conv Block的输入和输出维度不同,不能连续串联,主要用于改变特征向量的维度。ResNet50因其优异的性能,在图像识别、分类等领域得到了广泛应用。

以下是使用TensorFlow框架的ResNet50模型的代码示例:

import tensorflow as tf
from tensorflow.keras.applications import ResNet50

# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')

# 创建一个模拟的输入张量,维度为[batch_size, height, width, channels]
# 例如:一个batch中有1张3通道的224x224大小的图片
input_tensor = tf.random.uniform((1, 224, 224, 3))

# 将输入张量送到ResNet50模型中进行前向传播
output = model(input_tensor)

# 输出张量的形状为[batch_size, num_classes]
print(output.shape)

在这段代码中,我们首先导入了TensorFlow库和ResNet50模型。然后,我们加载了预训练的ResNet50模型,并创建了一个随机的输入张量来模拟一张图片。接着,我们将输入张量传递给模型进行前向传播,并打印输出张量的形状,它表示模型预测的类别概率分布。这个代码示例展示了如何在TensorFlow中使用ResNet50进行基本的图像分类任务。

目录
相关文章
|
4月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
5月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
262 26
|
4月前
|
机器学习/深度学习 城市大脑 安全
基于深度学习的客流量预测系统
本文分析了疫情后旅游市场复苏带动地铁客流增长的背景,探讨了客流预测对交通运营的重要性,综述了基于多源数据与深度学习模型(如LSTM、STGCN)的研究进展,并介绍了CNN与RNN在人流预测中的技术原理及系统实现路径。
|
4月前
|
机器学习/深度学习 传感器 算法
基于yolo8的深度学习室内火灾监测识别系统
本研究基于YOLO8算法构建室内火灾监测系统,利用计算机视觉技术实现火焰与烟雾的实时识别。相比传统传感器,该系统响应更快、精度更高,可有效提升火灾初期预警能力,保障生命财产安全,具有重要的应用价值与推广前景。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
5月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
503 4
|
5月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
704 4
|
5月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
298 0
|
5月前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
126 0