基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

简介: 垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。

一、介绍

垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。

二、系统效果图片展示

img_05_10_18_48_12

img_05_10_18_48_19

img_05_10_18_49_34

三、演示视频 and 完整代码 and 远程安装

地址:https://www.yuque.com/ziwu/yygu3z/lwutss28pac54l3n

四、ResNet50算法

ResNet50是一种深度残差网络(Residual Network),由微软研究院的Kaiming He等人提出。它通过引入残差学习解决了深层网络训练中的梯度消失和梯度爆炸问题,使得构建和训练非常深的网络成为可能。ResNet50包含50层网络结构,其中49层为卷积层,最后一层为全连接层。它利用残差块(残差单元)来构建网络,每个残差块包含3层卷积结构,通过跳跃连接(shortcut connections)将输入直接添加到块的输出,从而允许梯度直接流向前面的层,有效缓解了梯度消失问题。

ResNet50网络结构主要包括Identity Block和Conv Block两种残差块。Identity Block的输入和输出维度相同,可以串联多个,直接相加,维度不变。而Conv Block的输入和输出维度不同,不能连续串联,主要用于改变特征向量的维度。ResNet50因其优异的性能,在图像识别、分类等领域得到了广泛应用。

以下是使用TensorFlow框架的ResNet50模型的代码示例:

import tensorflow as tf
from tensorflow.keras.applications import ResNet50

# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')

# 创建一个模拟的输入张量,维度为[batch_size, height, width, channels]
# 例如:一个batch中有1张3通道的224x224大小的图片
input_tensor = tf.random.uniform((1, 224, 224, 3))

# 将输入张量送到ResNet50模型中进行前向传播
output = model(input_tensor)

# 输出张量的形状为[batch_size, num_classes]
print(output.shape)

在这段代码中,我们首先导入了TensorFlow库和ResNet50模型。然后,我们加载了预训练的ResNet50模型,并创建了一个随机的输入张量来模拟一张图片。接着,我们将输入张量传递给模型进行前向传播,并打印输出张量的形状,它表示模型预测的类别概率分布。这个代码示例展示了如何在TensorFlow中使用ResNet50进行基本的图像分类任务。

目录
相关文章
|
3天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
7月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
9月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
265 21
|
10月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
231 11
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
710 0

热门文章

最新文章

推荐镜像

更多