【玩转数据系列五】农业贷款发放预测

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。

(本文数据为虚构,仅供实验)

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2

一、背景

很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。
本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务。 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。本文通过农业贷款的历史发放情况,预测是否给预测集的用户发放他们需要的金额的贷款。

二、数据集介绍

具体字段如下:

字段名 含义 类型 描述
id 数据唯一标识符 string
name 用户名 string
region 用户所属地区 string 从北到南排列
farmsize 拥有土地大小 double 土地面积
rainfall 降雨量 double 降雨量
landquality 土地质量 double 土地质量数值越大越好
farmincome 收入 double 年收入
maincrop 种植作物 string 种植作物的种类
claimtype 贷款类型 string 两种
claimvalue 贷款金额 double 贷款金额

数据截图:

三、数据探索流程

首先,实验流程图:

1.数据源

数据的输入有两部分,贷款训练集用来进行回归模型的训练,共二百条数据,是历史贷款数据,包括一些farmsize、rainfall等特征,claimvalue是贷款收回的金额。贷款预测集是今年申请贷款者,claimvalue是农民申请的贷款金额,共71人。我们通过已有的二百多条历史数据,预测给七十一人中的哪些申请贷款人发放贷款。

2.特征工程

将一些字符串类型的数据,根据他们的含义映射成数字。比如说region字段,我们将其中的north、middle、south按照从北到南的顺序分别映射成0、1、2。然后通过类型转换将字段转换成double类型,这样就可以进行下面的回归计算了。

如下图:

3.回归及预测

线性回归组件对于历史数据训练并生成回归模型,在预测组件中利用回归模型对于预测集数据进行了预测。通过合并列组件将用户ID、预测值、申请的贷款值合并。预测值表示的是用户的还贷能力(预期可以归还的金额)。

4.回归模型评估

通过回归模型评估组件对于回归模型进行评估。

5.发放贷款人

通过过滤与映射组件筛选出可以获得贷款的人,这里的业务逻辑是针对每个客户,如果他被预测得到的还款能力大于他申请贷款的金额,就对他发放贷款。

四、其它

作者微信公众号(与作者讨论):

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

往期文章:

【玩转数据系列一】人口普查统计案例

【玩转数据系列二】机器学习应用没那么难,这次教你玩心脏病预测

【玩转数据系列三】利用图算法实现金融行业风控

【玩转数据系列四】听说啤酒和尿布很配?本期教你用协同过滤做推荐

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
6月前
|
弹性计算 运维 Shell
基于销售数据预测的智能补货
【4月更文挑战第30天】
83 0
|
6月前
|
Perl
R语言回测交易:根据历史信号/交易创建股票收益曲线
R语言回测交易:根据历史信号/交易创建股票收益曲线
|
6月前
TMA三均线股票期货高频交易策略的R语言实现
TMA三均线股票期货高频交易策略的R语言实现
|
小程序
L2-034 口罩发放 (25 分)(模拟)
L2-034 口罩发放 (25 分)(模拟)
428 0
|
机器学习/深度学习 Python
基于LightGBM实现银行客户信用违约预测
基于LightGBM实现银行客户信用违约预测
204 1
|
算法 安全 机器人
按键精灵实现交易开拓者33个品种回测时间和交易费用的设置
按键精灵实现交易开拓者33个品种回测时间和交易费用的设置
218 0
|
机器学习/深度学习 算法 Python
贷款违约预测-Task1 赛题理解
贷款违约预测-Task1 赛题理解
528 1
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF/kNNC/LoRC/SVMC/RFC/GBDTC:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(评估、调优、推理)
ML之RF/kNNC/LoRC/SVMC/RFC/GBDTC:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(评估、调优、推理)
ML之RF/kNNC/LoRC/SVMC/RFC/GBDTC:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(评估、调优、推理)

热门文章

最新文章