这篇文章是关于物理学信息神经网络(Physics Informed Neural Networks,简称PINNs)的研究,由Maziar Raissi、Paris Perdikaris和George Em Karniadakis撰写。文章分为两部分,这是第一部分,主要讨论了如何利用PINNs来解决非线性偏微分方程的数据驱动解和数据驱动发现问题。
主要内容总结:
PINN学习总结。读论文。
- 引言:文章首先介绍了机器学习和数据分析在科学学科中的应用,并指出在数据获取成本高昂的情况下,现有的机器学习技术在小数据环境下的局限性。
- 物理学信息神经网络:作者提出了一种新的神经网络——物理学信息神经网络(PINNs),这种网络在训练时会考虑到物理法则,特别是由非线性偏微分方程描述的法则。PINNs能够将物理法则作为先验信息编码,从而提高数据的信息量,使得即使在只有少量训练样本的情况下也能快速找到正确的解并泛化。
- 问题设置:文章考虑了一般形式的参数化非线性偏微分方程,并提出了两种问题:预测推断和系统识别或偏微分方程的数据驱动发现。
- 连续时间模型:介绍了如何使用深度神经网络来近似解,并利用自动微分技术来构造遵守物理法则的物理信息神经网络。
- 离散时间模型:提出了一种基于Runge-Kutta时间步进方案的方法,这种方法不需要在空间-时间域内使用大量的配置点来强制执行物理信息约束。
- 实验结果:通过Burgers方程和Schrödinger方程等例子,展示了PINNs在预测和发现偏微分方程解方面的有效性。
- 总结和讨论:文章总结了PINNs作为一种新的通用函数逼近器的能力,并讨论了它们在计算科学中的潜力。作者指出PINNs不应被视为传统偏微分方程数值方法的替代品,而是可以与之共存并提供新的直觉来构建结构化预测算法。
- 未来工作:文章最后提出了未来的研究方向,包括量化神经网络预测的不确定性。
关键词:数据驱动科学计算、机器学习、预测建模、Runge-Kutta方法、非线性动力学
代码和数据集:文章提供了相关代码和数据集的GitHub链接。
这篇文章展示了如何将深度学习与物理法则结合起来,以解决实际物理系统的问题,特别是在数据有限的情况下。