Matlab马尔可夫区制转换动态回归模型估计GDP增长率

简介: Matlab马尔可夫区制转换动态回归模型估计GDP增长率

本文估计实际GDP增长率的两状态Markov区制转换动态回归模型 。

创建模型进行估计

通过指定转移矩阵和两个区制的AR(0)(仅常数)子模型的两状态离散时间马尔可夫链,为朴素估计量创建马尔可夫转换动态回归模型。标记状态。

mc(NaN(2),'StateNames',["增长" "衰退"]);

加载和预处理数据

加载GDP数据集。

Data 包含1947:Q1-2005:Q2期间实际GDP的季度数据。估计周期  为1947:Q2-2004:Q2。

通过以下方式将数据转换为年度序列:

  1. 估计期内将数据转换为季度比率
  2. 将季度比率年度化


diff(Data(2:230))./Data(2:229); % 季度比率100*((1 + qrate).^4 - 1);       % 年度比率

估计模型

模型拟合Mdl 年利率序列 arate


estimate(Mdl,Mdl0,arate);

EstMdl 是估计的(完全指定的)马尔可夫转换动态回归模型。 EstMdl.Switch 是估计的离散时间马尔可夫链模型(dtmc 对象), EstMdl.Submodels 是估计的单变量VAR(0)模型(varm 对象)的向量。

显示估计的特定于状态的动态模型。



varm with properties:


Description: "ARIMA(0,0,0) Model (Gaussian Distribution)"
SeriesNames: "Y1"
NumSeries: 1
P: 0
Constant: 4.90146
AR: {}
Trend: 0
Beta: [1×0 matrix]
Covariance: 12.087


1-Dimensional VAR(0) Model
varm with properties:


Description: "ARIMA(0,0,0) Model (Gaussian Distribution)"
SeriesNames: "Y1"
NumSeries: 1
P: 0
Constant: 0.0084884
AR: {}
Trend: 0
Beta: [1×0 matrix]
Covariance: 12.6876


1-Dimensional VAR(0) Model

显示估计的状态转移矩阵。



2×2


0.9088    0.0912
0.2303    0.7697

估计后的EM算法

在估计马尔可夫转换动态回归模型中考虑模型和数据 。

创建部分指定模型进行估计

创建完全指定的模型,其中包含估计过程的初始参数值。

加载并预处理数据。



diff(Data(2:230))./Data(2:229);
100*((1 + qrate).^4 - 1);

使模型拟合数据。当估计过程终止时,绘制对数似然比与迭代步骤。

Plot(Mdl,Mdl0);

 

使模型拟合模拟数据

 

使用来自已知数据生成过程(DGP)的模拟数据评估估计准确性。本示例使用任意参数值。

为DGP创建模型

为转换区制创建一个完全指定的两状态离散时间马尔可夫链模型。

P = [0.7 0.3; 0.1 0.9];

对于每个状态,为过程创建一个完全指定的AR(1)模型。


% 常数
C1 = 4;
C2 = -1;


% 自回归系数
AR1 = 0.5;
AR2 = 0.3;


% 方差
V1 = 3;
V2 = 2;


% AR 子模型
arima('Constant',C1,'AR',AR1,'Variance',V1);

为DGP创建完全指定的Markov转换动态回归模型。

模拟来自DGP的路径

从DGP生成10条长度为1000的随机路径。


rng(1); % 重现性
N = 10;
n = 1000;
simulate(DGP,n,'Numpaths',N);

Data 是模拟的1000 x 10矩阵。

创建估计模型

创建一个部分指定的马尔可夫转换动态回归模型,该模型具有与数据生成过程相同的结构,但是指定了未知的转移矩阵和未知的子模型系数。

创建包含初始值的模型

创建一个完全指定的马尔可夫转换动态回归模型,该模型具有与相同的结构 Mdl,但是将所有可估计的参数都设置为初始值。


P0 = 0.5*ones(2);
dtmc(P0);


ms(mc0,[mdl01,mdl02]);

估计模型

使模型拟合每个模拟路径。对于每条路径,在EM算法的每次迭代中绘制对数似然图。



figure
hold on


for i = 1:N


estimate(Data(:,i),'Plot',true);




end


hold off

 

评估准确性

计算每个估计参数的蒙特卡洛平均值。

将总体参数与相应的蒙特卡洛估计进行比较。



DGPvsEstimate = 6×2


5.0000    5.0260
-2.0000   -1.9615
4.0000    3.9710
2.0000    1.9903
0.4000    0.4061
0.2000    0.2017


P = 2×2


0.7000    0.3000
0.1000    0.9000


PEstimate = 2×2


0.7065    0.2935
0.1023    0.8977


预采样数据

考虑 估计马尔可夫转换动态回归模型中的数据,但假设关注期间为1960:Q1–2004:Q2。另外,考虑向每个子模型添加一个自回归项。

创建部分指定的马尔可夫转换动态回归模型进行估计。指定AR(1)子模型。



arima(1,0,0);
ms(mc,[mdl; mdl]);

由于子模型是AR(1),因此每个子模型都需要进行一次预采样观察以初始化其动态分量以进行估计。

创建包含用于估计过程的初始参数值的模型。



P0 = 0.5*ones(2);
mc(P0,'StateNames');

加载数据。将整个集合转换为年化利率序列。

使用与年率序列相关的日期来确定预采样和估计采样周期。由于转换应用了一阶差分,因此必须从原始样本中删除第一个观察日期。


dates = datetime(dates(2:end),'ConvertFrom','datenum',...
'Format','yyyy:QQQ','Locale','en_US');
estPrd = datetime(["1960:Q2" "2004:Q2"],'InputFormat','yyyy:QQQ',...
'Format','yyyy:QQQ','Locale','en_US');

使模型拟合估计样本数据。指定预采样观测值,并在估计过程终止时在每次迭代时绘制对数似然度。

 

访问预期的平滑状态概率和对数似然

在估计马尔可夫转换动态回归模型中考虑模型和数据 。

创建部分指定的模型进行估计

创建完全指定的模型,其中包含估计过程的初始参数值。

加载并预处理数据。

使模型拟合数据。当算法终止时,返回预期的平滑状态概率和对数似然。

[EstMdl,SS,logL] = estimate(Mdl,Mdl0,arate);

SS 是预期平滑状态概率的228 x 2矩阵;行对应于估计样本中的周期,列对应于方案。 logL 是最终的对数似然。

显示估计样本中最后一个时期的预期平滑状态概率,并显示最终对数似然。



ans = 1×2


0.8985    0.1015


logL = -639.4962

执行约束估计

 

将模拟数据拟合到具有VARX子模型的Markov转换动态回归模型。指定用于估计的相等约束。

为DGP创建模型

为转换区制创建一个完全指定的三态离散时间马尔可夫链模型。


P = [0.8 0.1 0.1; 0.2 0.6 0.2; 0 0.1 0.9];
mc = dt(P);

对于每种状态,为响应过程创建一个完全指定的VARX(1)模型。为所有子模型指定相同的模型常数和滞后1 AR系数矩阵。对于每个模型,为一个外生变量指定不同的回归系数。



% 常数
C = [1;-1];


% 自回归系数
AR = {[0.6 0.1; 0.4 0.2]};


% 回归系数
Beta1 = [0.2;-0.4];




% VAR 子模型
dgp = varm('Constant',C,'AR',AR,'Covariance',5*eye(2));

为DGP创建完全指定的Markov转换动态回归模型。



ms(mc,[dgp1; dgp2; dgp3]);

模拟来自DGP的数据

通过从均值0和方差100的高斯分布中生成1000个观测值来模拟外生序列的数据。


rng(1); % 重现性
X = 10*randn(1000,1);

从DGP生成长度为1000的随机路径。为子模型回归指定模拟的外部数据。


Data = simulate(DGP,1000,'X',X);

Data 是模拟的1000 x 1向量。

创建估计模型

创建一个部分指定的马尔可夫转换动态回归模型,该模型具有与数据生成过程相同的结构,但是指定了未知的转换矩阵和未知的回归系数。指定常数和AR系数矩阵的真值。

ms(mcEst,[mdl; mdl; mdl]);

由于常数和AR系数矩阵的值被指定在 Mdlestimate 将它们作为用于估计等式约束。

创建包含初始值的模型

创建具有与相同结构的完全指定的马尔可夫转换动态回归模型 Mdl,但将所有可估计参数设置为初始值,并将具有相等约束的参数设置为中指定的值 Mdl

估计模型

使模型拟合模拟数据。指定回归的外部数据。在EM算法的每次迭代中绘制对数似然。



figure
EstMdl = estimate(Mdl,Mdl0,Data,'X',X,'IterationPlot',true);

 

评估准确性

将估计的回归系数向量和转移矩阵与其真实值进行比较。



Beta1 = 2×1


0.2000
-0.4000


Beta1Estimate = 2×1


0.1596
-0.4040


Beta2 = 2×1


0.6000
-1.0000


Beta2Estimate = 2×1


0.5888
-0.9771


Beta3 = 2×1


0.9000
-1.3000


Beta3Estimate = 2×1


0.8987
-1.2991


P = 3×3


0.8000    0.1000    0.1000
0.2000    0.6000    0.2000
0    0.1000    0.9000


PEstimate = 3×3


0.7787    0.0856    0.1357
0.1366    0.6906    0.1727
0.0086    0.0787    0.9127



相关文章
|
22小时前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
8天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
15天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
3月前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
91 0
|
3月前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
115 1
|
3月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。

热门文章

最新文章