基于HASM模型的高精度建模matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。

1.程序功能描述
本课题主要使用HASM进行高精度建模,主要对HASM模型进行介绍以及在实际中如何进行简化实现的。HASM原始的模型如下所示:

1.png

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

2.jpeg

3.核心程序

                   %第一类基本变量
                   E(i,j) = 1 + (( f(i,j+1,n) - f(i,j-1,n) )/( 2*h ))^2;
                   F(i,j) =     (( f(i,j+1,n) - f(i,j-1,n) )/( 2*h )) * (( f(i+1,j,n) - f(i-1,j,n) )/( 2*h ));
                   G(i,j) = 1 + (( f(i,j+1,n) - f(i,j-1,n) )/( 2*h ))^2;

                   %第二类基本变量
                   L(i,j) = ( f(i+1,j,n) - 2*f(i,j,n) + f(i-1,j,n) )/(sqrt( 1 +  (( f(i,j+1,n) - f(i,j-1,n) )/( 2*h ))^2  +  (( f(i+1,j,n) - f(i-1,j,n) )/( 2*h ))^2));
                   N(i,j) = ( f(i,j+1,n) - 2*f(i,j,n) + f(i,j-1,n) )/(sqrt( 1 +  (( f(i,j+1,n) - f(i,j-1,n) )/( 2*h ))^2  +  (( f(i+1,j,n) - f(i-1,j,n) )/( 2*h ))^2));

                   %第三类基本变量               
                   T1_11(i,j) = ( G(i,j) * ( E(i+1,j) - E(i-1,j) ) - 2*F(i,j)*( F(i+1,j) - F(i-1,j) ) + F(i,j)*( E(i,j+1) - E(i,j-1) ) )/( 4*( E(i,j)*G(i,j) - F(i,j)^2 )*h );
                   T2_11(i,j) =(2*E(i,j) * ( F(i+1,j) - F(i-1,j) ) -   E(i,j)*( E(i,j+1) - E(i,j-1) ) - F(i,j)*( E(i+1,j) - E(i-1,j) ) )/( 4*( E(i,j)*G(i,j) - F(i,j)^2 )*h );
                   T1_22(i,j) =(2*G(i,j) * ( F(i,j+1) - F(i,j-1) ) -   G(i,j)*( G(i+1,j) - G(i-1,j) ) - F(i,j)*( G(i,j+1) - G(i,j-1) ) )/( 4*( E(i,j)*G(i,j) - F(i,j)^2 )*h );
                   T2_22(i,j) =(  E(i,j) * ( G(i,j+1) - G(i,j-1) ) - 2*F(i,j)*( F(i,j+1) - F(i,j-1) ) + F(i,j)*( G(i+1,j) - G(i-1,j) ) )/( 4*( E(i,j)*G(i,j) - F(i,j)^2 )*h );

                end

figure;
Fmin  = max(min(min(f(:,:,Interation))),0);
Fmax  = max(max(f(:,:,Interation)))/3;
clims = [Fmin,Fmax];
data3 = f(:,:,Interation);
imagesc(data3,clims);
title('HASM迭代后的结果');
axis square;

%保存最后的计算结果
save result.mat data3


%将数据保存到txt文件中
fid = fopen('savedat.txt','wt');
for i = 1:r
    for j = 1:c
        fprintf(fid,'%d  ',data3(i,j));     
    end
    fprintf(fid,'\n');     
end
fclose(fid);

16_016m
AI 代码解读

4.本算法原理
HASM(Hierarchical Adaptive Statistical Modeling)模型是一种针对复杂系统高精度建模的方法,尤其适用于大规模、高维度数据的分析与预测。

4.1HASM模型概述
HASM模型基于层次化与自适应统计思想,通过构建多层结构模型,自下而上地捕捉数据的不同尺度特征,并通过自适应机制调整模型参数以适应数据的复杂性和不确定性。该模型的核心特点包括:

层次性:HASM模型将整个数据空间划分为多个层次,每一层代表一种特定的特征尺度。底层模型捕捉局部细节,高层模型则关注全局趋势和结构。

自适应性:模型参数在训练过程中能够根据数据分布的特性自动调整,以达到最佳拟合效果。这种自适应性体现在模型选择、参数估计、误差校正等多个环节。

统计性:HASM模型运用统计学原理对数据进行概率建模,通过最大化似然函数或最小化某种风险函数来确定最优模型参数。

4.2 HASM模型的数学表述

3.png
4.png
5.png
6.png

目录
打赏
0
6
6
1
207
分享
相关文章
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
基于PID控制器的双容控制系统matlab仿真
本课题基于MATLAB2022a实现双容水箱PID控制系统的仿真,通过PID控制器调整泵流量以维持下游水箱液位稳定。系统输出包括水位和流量两个指标,仿真结果无水印。核心程序绘制了水位和流量随时间变化的图形,并设置了硬约束上限和稳态线。双容水箱系统使用一阶线性微分方程组建模,PID控制器结合比例、积分、微分作用,动态调整泵的输出流量,使液位接近设定值。
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
7月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
284 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
169 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
145 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等