基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN

简介: 该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

```filePath =

'Test_data\悲伤1.wav'
AI 代码解读

类型:悲伤
识别置信度

Vmax =

0.9559
AI 代码解读


2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
```Labsn   = [];
% 遍历每种情绪
for i = 1:length(Em_kind)
    Labs0 = Em_kind(i); % 当前情绪标签
    trainfile = dir(['train_data/' char(Labs0), '\*.wav']); % 获取当前情绪的所有 WAV 文件
    Num_wav = length(trainfile(not([trainfile.isdir]))); % 计算有效 WAV 文件的数量

    % 遍历每个 WAV 文件
    for j = 1:Num_wav
        [ywav, Fs] = audioread(['train_data/' char(Labs0) '/' char(lower(Labs0)) int2str(j) '.wav']); % 读取音频文件

        % 计算 MFCC 特征
        [Fmfcc, ~, ~, H] = func_MFCC(ywav, Fs, Lframe, LShift, Fpre, @hamming, [fre_min fre_max], Nch, Cep_coff + 1, Cep_Sine);

        % 将当前文件的 MFCC 特征添加到训练数据集中
        Dat_trainset = [Dat_trainset; Fmfcc'];

        % 将当前文件的标签添加到标签集中
        Labs = [Labs; repmat(cellstr(Labs0), size(Fmfcc, 2), 1)];
        Labsn= [Labsn;repmat(i, size(Fmfcc, 2), 1)];
    end
end

% 训练 KNN 模型
model1 = fitcknn(Dat_trainset, Labs); % 标准化数据并训练 KNN 模型

% 训练多类分类模型
model2 = fitcecoc(Dat_trainset, Labs); % 训练多类分类模型

%GRNN
model3 = newgrnn(Dat_trainset',Labsn',5);



% 保存模型
save model.mat model1 model2 model3; % 将模型保存到文件中
179
AI 代码解读

4.算法理论概述
语音情绪识别是人工智能和信号处理领域中的一个重要研究方向。它旨在通过分析语音信号中的特征,识别出说话人的情绪状态,如高兴、悲伤、愤怒、恐惧等。随着人工智能技术的不断发展,语音情绪识别在人机交互、心理健康监测、客户服务等领域具有广泛的应用前景。

梅尔频率尺度:

   人耳对声音的感知不是线性的,而是在频率上呈现出一种非线性的关系。梅尔频率尺度是一种基于人耳听觉特性的频率尺度,它将频率转换为梅尔频率,使得人耳对不同频率的声音具有相似的感知。
AI 代码解读

MFCC 特征提取过程:

预加重:对输入的语音信号进行预加重处理,以增强高频部分的能量。预加重可以通过以下公式实现:,其中为输入的语音信号,为预加重后的信号,为预加重系数,通常取。

分帧:将语音信号分成若干个短时段,称为帧。每一帧的长度通常为 20-40ms,相邻帧之间有一定的重叠。

加窗:对每一帧信号进行加窗处理,以减少帧边界处的不连续性。常用的窗函数有汉明窗、汉宁窗等。

快速傅里叶变换(FFT):对加窗后的每一帧信号进行快速傅里叶变换,得到其频谱。

计算梅尔滤波器组能量:将频谱通过一组梅尔滤波器组,得到每个滤波器的输出能量。梅尔滤波器组是一组在梅尔频率尺度上均匀分布的带通滤波器,其数量通常为 20-40 个。

对数运算:对每个滤波器的输出能量取对数,得到对数梅尔滤波器组能量。

离散余弦变换(DCT):对对数梅尔滤波器组能量进行离散余弦变换,得到 MFCC 系数。DCT 可以将信号从时域转换到频域,同时具有良好的能量压缩性能。

GRNN 广义回归网络原理

GRNN 是一种基于径向基函数(Radial Basis Function,RBF)网络的改进型神经网络。它由输入层、模式层、求和层和输出层组成。

输入层:接收输入向量,其中为输入向量的维度。

模式层:每个神经元对应一个训练样本,其输出为输入向量与训练样本之间的距离的函数。常用的距离函数有欧氏距离、曼哈顿距离等。

求和层:由两个神经元组成,分别计算模式层输出的加权和。一个神经元计算模式层输出的算术和,另一个神经元计算模式层输出的加权和。

输出层:输出为求和层输出的函数,通常为线性函数。
image.png

相关文章
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
209 80
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
57 18
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
129 10
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

热门文章

最新文章