基于BP神经网络的苦瓜生长含水量预测模型matlab仿真

简介: 本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。

1.算法运行效果图预览
(完整程序运行后无水印)

T表示温度,v表示风速,h表示模型厚度

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```for i = 1:13;
figure;
subplot(211);
plot(y1{i},'ro');
hold on
plot(Train_output1{i},'b');
xlabel('times');
ylabel('水分比');
legend('BP神经网络输出水分比','实际测量水分比');
title(NAME{i});
grid on
subplot(212);
plot(y1{i}-Train_output1{i}' ,'b-');
xlabel('times');
ylabel('水分比误差');
grid on
ylim([-1,1]);
end
%风速变化显示
figure;
subplot(121);
plot(y1{1},'r-o');
hold on
plot(y1{2},'b-s');
hold on
plot(y1{3},'k-
');
hold on
plot(y1{4},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('T=55,v=0.3,h=3','T=55,v=0.6,h=3','T=55,v=0.9,h=3','T=55,v=1.2,h=3');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{1},'r-o');
hold on
plot(Train_output1{2},'b-s');
hold on
plot(Train_output1{3},'k-');
hold on
plot(Train_output1{4},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('T=55,v=0.3,h=3','T=55,v=0.6,h=3','T=55,v=0.9,h=3','T=55,v=1.2,h=3');
grid on
title('测量值');
grid on
ylim([0,1.2]);
%厚度变化显示
figure;
subplot(121);
plot(y1{5},'r-o');
hold on
plot(y1{6},'b-s');
hold on
plot(y1{7},'k-
');
hold on
plot(y1{8},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('h=3,T=55,v=0.9','h=6,T=55,v=0.9','h=9,T=55,v=0.9','h=12,T=55,v=0.9');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{5},'r-o');
hold on
plot(Train_output1{6},'b-s');
hold on
plot(Train_output1{7},'k-');
hold on
plot(Train_output1{8},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('h=3,T=55,v=0.9','h=6,T=55,v=0.9','h=9,T=55,v=0.9','h=12,T=55,v=0.9');
grid on
title('测量值');
grid on
ylim([0,1.2]);
%温度变化显示
figure;
subplot(121);
plot(y1{9},'r-o');
hold on
plot(y1{10},'b-s');
hold on
plot(y1{11},'k-
');
hold on
plot(y1{12},'m-^');
hold on
plot(y1{13},'c->');
hold on
xlabel('times');
ylabel('水分比');
legend('T=45,v=0.9,h=3','T=55,v=0.9,h=3','T=65,v=0.9,h=3','T=60,v=0.9,h=3','T=50,v=0.9,h=3');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{9},'r-o');
hold on
plot(Train_output1{10},'b-s');
hold on
plot(Train_output1{11},'k-*');
hold on
plot(Train_output1{12},'m-^');
hold on
plot(Train_output1{13},'c->');
hold on
xlabel('times');
ylabel('水分比');
legend('T=45,v=0.9,h=3','T=55,v=0.9,h=3','T=65,v=0.9,h=3','T=60,v=0.9,h=3','T=50,v=0.9,h=3');
grid on
title('测量值');
grid on
ylim([0,1.2]);
05_060m

```

4.算法理论概述
BP(Back Propagation)神经网络是一种常用的前馈神经网络,广泛应用于模式识别、数据拟合、分类等领域。其核心思想是利用梯度下降法调整网络权值,最小化预测输出与实际输出之间的误差。BP神经网络通常由输入层、一个或多个隐藏层和输出层组成。假设有一个单隐藏层的BP神经网络,其结构可以用以下公式表示:

image.png

   激活函数用于引入非线性特性,常见的激活函数包括Sigmoid函数、ReLU函数等。这里我们以Sigmoid函数为例:

image.png

   水分含量是农产品出售、贮藏及加工中考虑的重要因素。干燥是一个复杂的过程,通常涉及到热量和水分的转移,即是传热传质。为了对花椒的真空干燥过程进行直观的分析,通过绘制干燥曲线对干燥过程进行描述,能够较准确地预测干燥过程中水分变化规律,国内外学者对物料的干燥过程进行了建模分析,最先由Lewis在1921年提出了干燥理论,并建立了Lewis模型,后来的学者在此干燥理论基础上衍生了更多的干燥理论及模型,为实际生产提供理论基础。

   引用BP神经网络对试验样本数据对机器进行训练,能够对未知的样本的变化规律进行预测,避免了繁琐的数学建模。为了探究BP神经网络在花椒真空干燥过程中的应用效果,使用BP神经网络对花椒真空干燥过程中物料的水分比变化规律进行预测和模型的建立,验证BP神经网络模型的应用效果,为干燥理论的研究提供可靠的依据。

苦瓜生长含水量预测模型

输入特征:温度T、风速V、厚度H等。
输出:苦瓜的预测含水量。

相关文章
|
18天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
8天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
6天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
59 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码

热门文章

最新文章