基于BP神经网络的苦瓜生长含水量预测模型matlab仿真

简介: 本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。

1.算法运行效果图预览
(完整程序运行后无水印)

T表示温度,v表示风速,h表示模型厚度

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```for i = 1:13;
figure;
subplot(211);
plot(y1{i},'ro');
hold on
plot(Train_output1{i},'b');
xlabel('times');
ylabel('水分比');
legend('BP神经网络输出水分比','实际测量水分比');
title(NAME{i});
grid on
subplot(212);
plot(y1{i}-Train_output1{i}' ,'b-');
xlabel('times');
ylabel('水分比误差');
grid on
ylim([-1,1]);
end
%风速变化显示
figure;
subplot(121);
plot(y1{1},'r-o');
hold on
plot(y1{2},'b-s');
hold on
plot(y1{3},'k-
');
hold on
plot(y1{4},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('T=55,v=0.3,h=3','T=55,v=0.6,h=3','T=55,v=0.9,h=3','T=55,v=1.2,h=3');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{1},'r-o');
hold on
plot(Train_output1{2},'b-s');
hold on
plot(Train_output1{3},'k-');
hold on
plot(Train_output1{4},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('T=55,v=0.3,h=3','T=55,v=0.6,h=3','T=55,v=0.9,h=3','T=55,v=1.2,h=3');
grid on
title('测量值');
grid on
ylim([0,1.2]);
%厚度变化显示
figure;
subplot(121);
plot(y1{5},'r-o');
hold on
plot(y1{6},'b-s');
hold on
plot(y1{7},'k-
');
hold on
plot(y1{8},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('h=3,T=55,v=0.9','h=6,T=55,v=0.9','h=9,T=55,v=0.9','h=12,T=55,v=0.9');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{5},'r-o');
hold on
plot(Train_output1{6},'b-s');
hold on
plot(Train_output1{7},'k-');
hold on
plot(Train_output1{8},'m-^');
hold on
xlabel('times');
ylabel('水分比');
legend('h=3,T=55,v=0.9','h=6,T=55,v=0.9','h=9,T=55,v=0.9','h=12,T=55,v=0.9');
grid on
title('测量值');
grid on
ylim([0,1.2]);
%温度变化显示
figure;
subplot(121);
plot(y1{9},'r-o');
hold on
plot(y1{10},'b-s');
hold on
plot(y1{11},'k-
');
hold on
plot(y1{12},'m-^');
hold on
plot(y1{13},'c->');
hold on
xlabel('times');
ylabel('水分比');
legend('T=45,v=0.9,h=3','T=55,v=0.9,h=3','T=65,v=0.9,h=3','T=60,v=0.9,h=3','T=50,v=0.9,h=3');
grid on
title('BP神经网络输出');
ylim([0,1.2]);
subplot(122);
plot(Train_output1{9},'r-o');
hold on
plot(Train_output1{10},'b-s');
hold on
plot(Train_output1{11},'k-*');
hold on
plot(Train_output1{12},'m-^');
hold on
plot(Train_output1{13},'c->');
hold on
xlabel('times');
ylabel('水分比');
legend('T=45,v=0.9,h=3','T=55,v=0.9,h=3','T=65,v=0.9,h=3','T=60,v=0.9,h=3','T=50,v=0.9,h=3');
grid on
title('测量值');
grid on
ylim([0,1.2]);
05_060m

```

4.算法理论概述
BP(Back Propagation)神经网络是一种常用的前馈神经网络,广泛应用于模式识别、数据拟合、分类等领域。其核心思想是利用梯度下降法调整网络权值,最小化预测输出与实际输出之间的误差。BP神经网络通常由输入层、一个或多个隐藏层和输出层组成。假设有一个单隐藏层的BP神经网络,其结构可以用以下公式表示:

image.png

   激活函数用于引入非线性特性,常见的激活函数包括Sigmoid函数、ReLU函数等。这里我们以Sigmoid函数为例:

image.png

   水分含量是农产品出售、贮藏及加工中考虑的重要因素。干燥是一个复杂的过程,通常涉及到热量和水分的转移,即是传热传质。为了对花椒的真空干燥过程进行直观的分析,通过绘制干燥曲线对干燥过程进行描述,能够较准确地预测干燥过程中水分变化规律,国内外学者对物料的干燥过程进行了建模分析,最先由Lewis在1921年提出了干燥理论,并建立了Lewis模型,后来的学者在此干燥理论基础上衍生了更多的干燥理论及模型,为实际生产提供理论基础。

   引用BP神经网络对试验样本数据对机器进行训练,能够对未知的样本的变化规律进行预测,避免了繁琐的数学建模。为了探究BP神经网络在花椒真空干燥过程中的应用效果,使用BP神经网络对花椒真空干燥过程中物料的水分比变化规律进行预测和模型的建立,验证BP神经网络模型的应用效果,为干燥理论的研究提供可靠的依据。

苦瓜生长含水量预测模型

输入特征:温度T、风速V、厚度H等。
输出:苦瓜的预测含水量。

相关文章
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
40 18
|
10天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
19天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
124 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)