SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性

简介: 该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

   由仿真结果可以看出:信道时间相关性随着时间间隔的增大而减小,同一个天线间隔下,宏小区与微小区的间相关性相同,因为这两种场景的AOA产生方法相同,也反映出该信道模型不够准确。同理,频率相关性,空间相关性也具有类似的特征。

2.算法涉及理论知识概要
SCM和SCME是两种用于仿真无线通信信道特性的模型,特别是在LTE和后续技术如5G的研究与设计中。它们旨在模拟真实环境中复杂的无线电波传播特性,包括空间相关性、时间相关性和频率相关性。

  SCM模型最初设计用于WCDMA系统,后来被扩展用于其他通信系统。它考虑了多种传播场景,如微小区、宏小区、室内环境等,通过一系列参数来表征信道的多径特性、衰落特性及空间、时间、频率的相关性。

  其信道模型图如图所示:

79b5cc3271a4c4900e44517e8f7c338d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

信道的空间相关函数:

3cda17b5ed20b24792022e4d502419f7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

信道的时间相关函数:

def4c60a900341016bc60afb32002977_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

信道的频率相关函数:

6de6fd885d1474f0f8e211f076325b80_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   SCME模型专为LTE和后续技术设计,它在SCM基础上进行了扩展和改进,以适应更高速率、更广频谱的应用场景。SCME模型同样关注空间、时间和频率相关性,但提供了更为精细的参数化,以适应多样化的信道环境。

   空间相关性:SCME模型在空间相关性方面引入了更为细致的簇(Cluster)概念,每个簇内部包含多个径,簇间和簇内径之间的角度和功率分布都有明确的模型描述。空间相关性通过簇的分布和各径功率的角分布函数来表征,增加了模型的复杂度和真实性。

   时间相关性:SCME模型沿用了多普勒效应来模拟时间选择性,但对多普勒频谱进行了细化,以更好地适应移动速度范围更广的设备。此外,它还可能包含更复杂的时变模型来描述快速和慢速衰落过程。

  频率相关性:在SCME中,频率相关性通过更加精确的功率延迟谱(Power Delay Profile, PDP)来描述,PDP不仅反映多径时延的统计特性,还通过更细致的多径结构模拟了更为复杂的频率选择性衰落。

3.MATLAB核心程序
```global dist;

%标准化天线间距
ds = [0:0.5:20];
Rd1= zeros(size(ds));
Rd2= zeros(size(ds));
for ii = 1:length(ds);
ii
Rtmp1 = 0;
Rtmp2 = 0;
for ij = 1:100
dist=ds(ii);
H1=scm(scmparset,linkparset(1),antparset);%macro
H2=scm(scmparset2,linkparset(1),antparset);%micro
%计算空间相关性
[R,C,K,P] = size(H1);
for i1=1:K
for j1=1:P
Rtmp1 = Rtmp1+mean2(H1(:,:,i1,j1)[H1(:,:,i1,j1)]');
Rtmp2 = Rtmp2+mean2(H2(:,:,i1,j1)
[H2(:,:,i1,j1)]');
end
end
end
Rd1(ii)=abs(Rtmp1)/P/K/100;
Rd2(ii)=abs(Rtmp2)/P/K/100;
end

Rd1 = Rd1/max(Rd1);
Rd2 = Rd2/max(Rd2);

figure;
plot(ds,Rd1,'b');
hold on
plot(ds,Rd2,'r--');
xlabel('标准化天线间距');
ylabel('空间互相关性');
legend('macro','micro');
save result.mat ds Rd1 Rd2
01_165m

```

相关文章
|
18小时前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
18小时前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
18小时前
|
编解码 算法 数据挖掘
基于MUSIC算法的六阵元圆阵DOA估计matlab仿真
该程序使用MATLAB 2022a版本实现基于MUSIC算法的六阵元圆阵DOA估计仿真。MUSIC算法通过区分信号和噪声子空间,利用协方差矩阵的特征向量估计信号到达方向。程序计算了不同角度下的MUSIC谱,并绘制了三维谱图及对数谱图,展示了高分辨率的DOA估计结果。适用于各种形状的麦克风阵列,尤其在声源定位中表现出色。
|
17小时前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
8 2
|
1天前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
126 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
97 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
72 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章