Matlab 遗传算法优化极限学习机(GA-ELM)回归预测

本文涉及的产品
全球加速 GA,每月750个小时 15CU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: Matlab 遗传算法优化极限学习机(GA-ELM)回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

引言: 在当今能源紧缺的时代,风能作为一种可再生的清洁能源备受关注。然而,由于风能的不稳定性和难以预测性,风电场的运行和管理面临着巨大的挑战。因此,开发一种准确可靠的风电数据预测模型对于实现风电场的高效运行至关重要。本文将介绍一种基于遗传算法优化的极限学习机(ELM)模型,用于风电数据的预测。

第一部分:风电数据预测的重要性 风能的不确定性和波动性使得风电场的运行和管理变得复杂。风电场需要准确地预测风速、风向和风能输出等关键参数,以便进行合理的发电计划和运行调度。通过准确的风电数据预测,风电场可以更好地规划发电能力、优化发电效率,并提高风电场的可靠性和经济性。

第二部分:极限学习机(ELM)模型的介绍 极限学习机(ELM)是一种新兴的机器学习算法,其具有快速训练速度和良好的泛化能力。ELM模型通过随机生成输入层到隐藏层之间的权重和偏置,然后通过最小化残差平方和来训练输出层的权重。ELM模型的优势在于其快速训练速度和较好的泛化能力,使其成为风电数据预测的理想选择。

第三部分:遗传算法优化ELM模型 遗传算法是一种模拟自然进化过程的优化算法,通过模拟自然选择、交叉和变异等操作,逐步优化解的适应度。在本文中,我们将使用遗传算法来优化ELM模型的参数,以提高其预测性能。通过遗传算法的优化,ELM模型可以更好地适应风电数据的特征,从而提高预测精度和稳定性。

第四部分:实验设计和结果分析 为了验证遗传算法优化的ELM模型在风电数据预测中的性能,我们收集了实际的风电数据,并将其分为训练集和测试集。然后,我们使用遗传算法优化的ELM模型对测试集进行预测,并与传统的预测模型进行比较。实验结果表明,遗传算法优化的ELM模型在风电数据预测中具有较高的准确性和稳定性,优于传统的预测模型。

结论: 本文介绍了一种基于遗传算法优化的极限学习机(ELM)模型,用于风电数据的预测。通过遗传算法的优化,ELM模型可以更好地适应风电数据的特征,提高预测精度和稳定性。实验结果表明,遗传算法优化的ELM模型在风电数据预测中具有较高的准确性和稳定性。这种基于遗传算法优化的ELM模型为风电场的运行和管理提供了一种可靠的预测工具,有助于实现风电场的高效运行和可持续发展。

⛄ 部分代码

% BS2RV.m - Binary string to real vector%% This function decodes binary chromosomes into vectors of reals. The% chromosomes are seen as the concatenation of binary strings of given% length, and decoded into real numbers in a specified interval using% either standard binary or Gray decoding.%% Syntax:       Phen = bs2rv(Chrom,FieldD)%% Input parameters:%%               Chrom    - Matrix containing the chromosomes of the current%                          population. Each line corresponds to one%                          individual's concatenated binary string%         representation. Leftmost bits are MSb and%         rightmost are LSb.%%               FieldD   - Matrix describing the length and how to decode%         each substring in the chromosome. It has the%         following structure:%%        [len;    (num)%         lb;    (num)%         ub;    (num)%         code;    (0=binary     | 1=gray)%         scale;    (0=arithmetic | 1=logarithmic)%         lbin;    (0=excluded   | 1=included)%         ubin];    (0=excluded   | 1=included)%%         where%        len   - row vector containing the length of%          each substring in Chrom. sum(len)%          should equal the individual length.%        lb,%        ub    - Lower and upper bounds for each%          variable. %        code  - binary row vector indicating how each%          substring is to be decoded.%        scale - binary row vector indicating where to%          use arithmetic and/or logarithmic%          scaling.%        lbin,%        ubin  - binary row vectors indicating whether%          or not to include each bound in the%          representation range%% Output parameter:%%               Phen     - Real matrix containing the population phenotypes.%% Author: Carlos Fonseca,   Updated: Andrew Chipperfield% Date: 08/06/93,    Date: 26-Jan-94function Phen = bs2rv(Chrom,FieldD)% Identify the population size (Nind)%      and the chromosome length (Lind)[Nind,Lind] = size(Chrom);% Identify the number of decision variables (Nvar)[seven,Nvar] = size(FieldD);if seven ~= 7  error('FieldD must have 7 rows.');end% Get substring propertieslen = FieldD(1,:);lb = FieldD(2,:);ub = FieldD(3,:);code = ~(~FieldD(4,:));scale = ~(~FieldD(5,:));lin = ~(~FieldD(6,:));uin = ~(~FieldD(7,:));% Check substring properties for consistencyif sum(len) ~= Lind,  error('Data in FieldD must agree with chromosome length');endif ~all(lb(scale).*ub(scale)>0)  error('Log-scaled variables must not include 0 in their range');end% Decode chromosomesPhen = zeros(Nind,Nvar);lf = cumsum(len);li = cumsum([1 len]);Prec = .5 .^ len;logsgn = sign(lb(scale));lb(scale) = log( abs(lb(scale)) );ub(scale) = log( abs(ub(scale)) );delta = ub - lb;Prec = .5 .^ len;num = (~lin) .* Prec;den = (lin + uin - 1) .* Prec;for i = 1:Nvar,    idx = li(i):lf(i);    if code(i) % Gray decoding      Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2);    end    Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ];    Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));endexpand = ones(Nind,1);if any(scale)  Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));end

⛄ 运行结果

⛄ 参考文献

[1]刘振男、杜尧、韩幸烨、和鹏飞、周正模、曾天山.基于遗传算法优化极限学习机模型的干旱预测——以云贵高原为例[J].人民长江, 2020, 51(8):6.DOI:CNKI:SUN:RIVE.0.2020-08-003.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
21小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2月前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
171 11
|
2月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
264 15
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。

热门文章

最新文章