基于微分 Vaiana Rosati 模型对 SDF 速率无关迟滞系统进行非线性时程分析的 Matlab 代码

简介: 基于微分 Vaiana Rosati 模型对 SDF 速率无关迟滞系统进行非线性时程分析的 Matlab 代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

非线性平衡方程

与速率无关的迟滞广义力

广义外力

数值法

结果 - 正弦广义力

结果 – 余弦广义力


核心代码

%  =========================================================================================clc; clear all; close all;%% SDF RATE-INDEPEDENT HYSTERETIC SYSTEM MASSm = 10;                                                                    % Ns^2/m%% VAIANA ROSATI MODEL PARAMETERSkbp     = 0;     kbm     = 0;                                              % N/mf0p     = 1.2;   f0m     = 1.2;                                            % Nalfap   = 80;    alfam   = 80;                                             % 1/mbeta1p  = 0.01;  beta1m  = -0.01;                                          % Nbeta2p  = 35;    beta2m  = -35;                                            % 1/mgamma1p = 2;     gamma1m = 2;                                              % Ngamma2p = 80;    gamma2m = 80;                                             % 1/mgamma3p = 0.006; gamma3m = -0.006;                                         % mparp    = [kbp f0p alfap beta1p beta2p gamma1p gamma2p gamma3p];           % -parm    = [kbm f0m alfam beta1m beta2m gamma1m gamma2m gamma3m];           % -%% EXTERNAL GENERALIZED FORCEtv = 0:0.001:10;                                                           % sfp = 1;                                                                    % Hzp0 = 14;                                                                   % Np  = p0*sin(2*pi*fp*tv(1:length(tv)));                                     % N%% RUNGE-KUTTA METHOD %% INITIAL SETTINGneq = 3;                                                                   % - number of equationsIC  = [0 0 0];                                                             % - initial conditions [x1 x2 x3]%% CALCULATIONS AT EACH TIME STEPoptions = odeset('RelTol',1e-10,'AbsTol',1e-10);[t,x]   = ode45(@(t,x) ODEs(t, x, neq, m, parp, parm, p, tv), tv, IC, options);%% PLOTSfigure('Color',[0.949019610881805 0.949019610881805 0.949019610881805]);subplot('Position',[0.05 0.58 0.2 0.4]);grid on; box on;xlabel('time [s]');ylabel('applied force [N]');axis([0 10 -20 20]);set(gca,'XTick',[0 2 4 6 8 10]);set(gca,'YTick',[-20 -10 0 10 20]);set(gca,'GridLineStyle','--');set(gca,'FontName','Times New Roman');set(gca,'FontSize',16);plot1 = line(t,p,'Color','[0.584313750267029 0.168627455830574 0.294117659330368]','LineWidth',3);subplot('Position',[0.30 0.58 0.2 0.4]);grid on; box on;xlabel('time [s]');ylabel('displacement [m]');axis([0 10 -0.2 0.2]);set(gca,'XTick',[0 2 4 6 8 10]);set(gca,'YTick',[-0.2 -0.1 0 0.1 0.2]);set(gca,'GridLineStyle','--');set(gca,'FontName','Times New Roman');set(gca,'FontSize',16);plot2 = line(t,x(:,1),'Color','[0.204, 0.302, 0.494]','LineWidth',3);subplot('Position',[0.05 0.08 0.2 0.4]);grid on; box on;xlabel('time [s]');ylabel('velocity [m/s]');axis([0 10 -0.8 0.8]);set(gca,'XTick',[0 2 4 6 8 10]);set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);set(gca,'GridLineStyle','--');set(gca,'FontName','Times New Roman');set(gca,'FontSize',16);plot3 = line(t,x(:,2),'Color','[0.204, 0.302, 0.494]','LineWidth',3);subplot('Position',[0.30 0.08 0.2 0.4]);grid on; box on;xlabel('displacement [m]');ylabel('force [N]');axis([-0.2 0.2 -8 8]);set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);set(gca,'YTick',[-8.0 -4.0 0 4.0 8.0]);set(gca,'GridLineStyle','--');set(gca,'FontName','Times New Roman');set(gca,'FontSize',16);plot4 = line(x(:,1),x(:,3),'Color','[0.204, 0.302, 0.494]','LineWidth',3);subplot('Position',[0.56 0.12 0.4 0.8]);grid on; box on;xlabel('d [m]');ylabel('v [m/s]');zlabel('f [N]');axis([-0.2 0.2 -0.8 0.8 -8 8]);set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);set(gca,'ZTick',[-8.0 -4.0 0 4.0 8.0]);set(gca,'GridLineStyle','--');set(gca,'FontName','Times New Roman');set(gca,'FontSize',16);set(gca,'BoxStyle','full');view([229.572533907569 40.0908387200157]);plot5 = line(x(:,1),x(:,2),x(:,3),'Color','[0.204, 0.302, 0.494]','Linewidth',3);

⛄ 运行结果


⛄ 参考文献

Vaiana, Nicolò, and Luciano Rosati. “Classification and Unified Phenomenological Modeling of Complex Uniaxial Rate-Independent Hysteretic Responses.” Mechanical Systems and Signal Processing, vol. 182, Elsevier BV, Jan. 2023, p. 109539, doi:10.1016/j.ymssp.2022.109539.

Vaiana, Nicolò, and Luciano Rosati. “Analytical and Differential Reformulations of the Vaiana–Rosati Model for Complex Rate-Independent Mechanical Hysteresis Phenomena.” Mechanical Systems and Signal Processing, vol. 199, Elsevier BV, Sept. 2023, p. 110448, doi:10.1016/j.ymssp.2023.110448.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
6天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
103 65
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
55 18
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
2月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
215 13
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
139 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章