基于De-Jitter Buffer算法的无线网络业务调度matlab仿真,对比RR调度算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 1. **功能描述**: 提出了一个去抖动缓冲区感知调度器,结合用户终端的缓冲状态减少服务中断。该算法通过动态调整数据包发送速率以优化网络延迟和吞吐量。2. **测试结果**: 使用MATLAB 2022a进行了仿真测试,结果显示De-Jitter Buffer算法在网络拥塞时比RR调度算法更能有效利用资源,减少延迟,并能根据网络状态动态调整发送速率。3. **核心程序**: MATLAB代码实现了调度逻辑,包括排序、流量更新、超时和中断处理等功能。仿真结果和算法原理验证了De-Jitter Buffer算法在无线网络调度中的优势。

1.程序功能描述
去抖动缓冲器(动态缓冲技术) 通常在用户终端的流式播放器处采用,以最小化分组延迟对用户体验的降级。然而,由于无线电信道的波动,在无线分组网络中,为流用户提供服务质量(QoS)仍然是一项具有挑战性的任务。在这个项目中,我们将提出一种去抖动缓冲区感知调度器,该调度器考虑用户终端的去抖动缓冲状态,以减少服务中断。将进行仿真以验证所提出算法的性能。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

    随着网络负载的增加和流量模式的复杂化,De-Jitter Buffer算法在降低网络延迟和提高吞吐量方面表现出明显优势。与RR调度算法相比,De-Jitter Buffer算法在网络拥塞情况下能够更有效地利用网络资源,减少数据包在缓冲区中的等待时间,从而降低网络延迟。此外,De-Jitter Buffer算法能够根据网络状态动态调整发送速率,更好地适应突发流量和网络变化。因此,在无线网络业务调度中,De-Jitter Buffer算法具有更高的灵活性和适应性。

3.核心程序


    for order1 = 1:Nums
        for order2 = Nums:-1:2
            if Factor(2,order2) > Factor(2,order2 - 1)
ss_tem              = Factor(:,order2);
                Factor(:,order2)    = Factor(:,order2 - 1);
                Factor(:,order2 -1) = ss_tem;             
            end
        end
    end   
Alloc          = Factor(1,:);
STraffic(:,2)  = (1-1/tc)*STraffic(:,2); 
    for j = 1:Nums
        for i = 1:Nums
            if Alloc(i) == j
STraffic(j,2)  = (1-1/tc)*STraffic(j,2)+STraffic(j,9).*STraffic(j,1)/tc; 
            end
        end
    end    
all_packet_bit       = all_packet_bit+sum(STraffic(:,9).*STraffic(:,12));    
STraffic(User_On,10) = STraffic(User_On,10)-1;              
    %超时判断
Rer             = find(STraffic(:,6)>0);                
STraffic(Rer,7) = STraffic(Rer,7)+1;                
Rer_ind         = find(STraffic(Rer,7)>=STraffic(Rer,14));           
    if Rer_ind ~= 0
Rer_cub       = Rer(Rer_ind); 
packet_updata = packet_updata+size(Rer_cub,1);                  
       for j5=1:size(Rer_cub,1)
           switch STraffic(j5,14)
           case Stimes2
VIOP_packet_all         = VIOP_packet_all+1;   
VIOP_delay(Stimes2+100) = VIOP_delay(Stimes2+100)+1;
VIOP_packet_delay       = VIOP_packet_delay+Stimes2+100;
           end
           for j6=1:(STraffic(Rer_cub(j5),6)-1)    
STraffic_Index(Rer_cub(j5),j6)=STraffic_Index(Rer_cub(j5),j6+1);     
           end
       end
STraffic(Rer_cub,7)=times-STraffic_Index(Rer_cub,1);                
STraffic(Rer_cub,6)=STraffic(Rer_cub,6)-1;                   
    end
   %判断是否中断
STraffic(:,5)=STraffic(:,5)-1; 
   k=find(STraffic(:,5)<=0);
   if k ~= 0
STraffic(k,4)=-1*STraffic(k,4);               
      for ij1=1:size(k,1)
          switch STraffic(ij1,14)      
          case Stimes2
STraffic(ij1,5)=exprnd(1000,1,1);
          end
      end
STraffic(k,10) = 0;                     
STraffic(k,8)  = times+1;                     
   end
CUTS(times) = sum(STraffic(:,2));
end

figure; 
plot(CUTS,'r-o');
hold off;
grid on
xlabel('时间');
ylabel('累积传输数据量')

save result.mat CUTS
12_007m

4.本算法原理
随着无线网络技术的飞速发展,业务调度策略在提升网络性能、确保用户体验方面发挥着重要作用。De-Jitter Buffer算法作为一种新型的调度策略,旨在降低网络延迟、提高吞吐量。本文将详细分析该算法的原理,并通过Matlab仿真与RR调度算法进行对比,评估其在无线网络业务调度中的优势。

4.1、De-Jitter Buffer算法原理
De-Jitter Buffer算法是一种基于缓冲区管理的调度策略,其核心思想是通过动态调整数据包的发送速率来降低网络延迟。具体实现过程如下:

数据包到达时,首先进入缓冲区;
根据当前网络状态和数据包特性,计算数据包的发送速率;
动态调整缓冲区大小,以适应不同速率的数据包;
当缓冲区数据达到一定阈值时,开始发送数据包;
发送过程中,持续监测网络状态,动态调整发送速率。
数学公式表示如下:

设数据包到达速率为λ,发送速率为μ,缓冲区大小为B。则数据包在缓冲区中的平均等待时间W可表示为:

W = (λ - μ) / λ * B / μ (1)

通过动态调整μ,使W最小化,从而实现降低网络延迟的目标。

4.2、RR调度算法原理
RR(Round Robin)调度算法是一种经典的调度策略,其核心思想是平等对待每个数据包,按照固定的时间片轮询发送。具体实现过程如下:

将所有数据包排成一个队列;
为每个数据包分配一个固定的时间片;
按照队列顺序,依次发送每个数据包;
当所有数据包发送完毕后,重新回到队列头部开始下一轮发送。
RR调度算法具有公平性、简单性和易实现性等优点,但在面对突发流量和网络拥塞时,可能导致较高的延迟和丢包率。

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
186 0
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
155 0
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
251 0
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
120 0
|
1月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
109 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
111 0
下一篇
oss云网关配置