变分模态分解|Matlab逐次变分模态分解SVMD数据重构

简介: 变分模态分解|Matlab逐次变分模态分解SVMD数据重构

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

逐次变分模态分解(Sequential Variational Mode Decomposition,简称SVMD)是一种用于信号处理和数据分析的方法。它可以将复杂的信号分解为一系列模态函数,每个模态函数代表了信号中的一个特定频率成分。SVMD的主要目标是提取信号中的不同频率成分,并将其重构为原始信号。

SVMD的基本原理是通过变分模态分解的方式将信号分解为多个模态函数。在每个迭代步骤中,SVMD通过最小化信号与模态函数之间的差异来更新模态函数。这个过程会不断重复,直到收敛为止。最终得到的模态函数可以用于重构原始信号。

SVMD的另一个关键特点是逐次分解。在每个迭代步骤中,SVMD会从信号中提取出一个主要的频率成分,并将其从信号中剔除。这样,每个迭代步骤都会提取出信号中的一个频率成分,直到所有的频率成分都被提取完毕。这种逐次分解的方式可以更好地捕捉到信号中的不同频率成分。

SVMD在信号处理和数据分析中有广泛的应用。它可以用于去噪、特征提取、频谱分析等多个领域。通过将信号分解为模态函数,SVMD可以更好地理解和描述信号的频率特征。这对于信号处理和数据分析来说是非常重要的。

SVMD的数据重构是将分解得到的模态函数重新组合成原始信号的过程。通过将每个模态函数加权相加,可以得到重构后的信号。这个过程可以用于还原原始信号的频率特征,并且可以根据需要进行进一步的分析和处理。

总之,逐次变分模态分解是一种用于信号处理和数据分析的有效方法。它可以将复杂的信号分解为多个模态函数,并且可以通过数据重构将其重新组合成原始信号。SVMD的应用领域广泛,对于理解和描述信号的频率特征非常有帮助。通过深入研究和应用SVMD,我们可以更好地处理和分析各种类型的信号和数据。

⛄ 核心代码

%% This is a script to test the SVMD methodclose allclear clc%% Example 1 (ECG signal)load('ECG.mat'); signal=(val (1,:));%----------------- InitializationmaxAlpha=20000; %compactness of modetau=0;%time-step of the dual ascenttol=1e-6; %tolerance of convergence criterion;stopc=4;%the type of stopping criteriafs=125; % sampling frequency T = length(signal);% time domain (t -->> 0 to T)t = (1:T)/T;omega_freqs = t-0.5-1/T;%discretization of spectral domainf_hat=fftshift(fft(signal));%-------------- SVMD function[u,uhat]=svmd(signal,maxAlpha,tau,tol,stopc);plot(signal)hold onplot(sum(u))legend('Input Signal','Reconstructed Signal')figuresubplot(211)plot(omega_freqs*fs,abs(uhat))title('Spectrum of reconstructed signal')xlabel('Hz')subplot(212)plot(omega_freqs*fs,abs(f_hat))title('Spectrum of original signal')xlabel('Hz')%% Example 2 (EEG signal)%  % load('EEG.mat');% signal=double(eeg (1,:));% % % %% Initialization% maxAlpha=1000; %compactness of mode% tau=0;%time-step of the dual ascent% tol=1e-6; %tolerance of convergence criterion;% stopc=1;%the type of stopping criteria% % fs=200; % sampling frequency % T = length(signal);% time domain (t -->> 0 to T)% t = (1:T)/T;% omega_freqs = t-0.5-1/T;%discretization of spectral domain% f_hat=fftshift(fft(signal));% % [u,uhat]=svmd(signal,maxAlpha,tau,tol,stopc);% % plot(signal)% hold on% plot(sum(u))% legend('Input Signal','Reconstructed Signal')% % figure% subplot(211)% plot(omega_freqs*fs,abs(uhat))% title('Spectrum of reconstructed signal')% xlabel('Hz')% subplot(212)% plot(omega_freqs*fs,abs(f_hat))% title('Spectrum of original signal')% xlabel('Hz')%

⛄ 运行结果

⛄ 参考文献

[1] 叶剑华,曹旌,杨理,等.基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J].电网技术, 2022(007):046.

[2] 赵亚军,窦远明,张明杰.基于变分模态分解的模态参数识别研究[J].振动与冲击, 2020, 39(2):8.DOI:CNKI:SUN:ZDCJ.0.2020-02-017.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
1月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
147 13
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
122 10
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
128 6
|
7月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
8月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
204 4
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
|
7月前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
7月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
69 0
|
8月前
|
计算机视觉
MATLAB用Lasso回归拟合高维数据和交叉验证
MATLAB用Lasso回归拟合高维数据和交叉验证
|
8月前
|
SQL 移动开发 算法
MATLAB改进模糊C均值聚类FCM在电子商务信用评价应用:分析淘宝网店铺数据|数据分享
MATLAB改进模糊C均值聚类FCM在电子商务信用评价应用:分析淘宝网店铺数据|数据分享

热门文章

最新文章