m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真

简介: 摘要:在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。

1.算法仿真效果
matlab2022a仿真结果如下:

优化前:

7cd34ee06a33e9465bdfcdd54247e3a5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
d848a4f5f2f6984fea96d14a3d8091a3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

优化后:

78e09f10ab09ebf18ab711704c4218dc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
c51a38c4dd2f9229059f50163dc5d34e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对比如下:

d27c2ce408c6b20752b960a75e2bbfa3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于粒子群优化(Particle Swarm Optimization, PSO)和长门控循环单元(Gated Recurrent Unit, GRU)网络的电力负荷预测算法,是一种融合了优化技术和深度学习的先进预测模型。这种混合方法旨在通过PSO算法优化GRU网络的超参数,以提高模型在电力负荷预测任务中的准确性和稳定性。

   PSO是一种启发式全局优化技术,灵感来源于鸟群觅食行为,通过模拟个体(粒子)在解空间中的搜索来寻找最优解。每个粒子代表一个潜在解决方案,并通过跟踪历史最优解和个人最优解来更新其位置和速度。

de66c568f119df4637712b7f25dfa6f1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   GRU是RNN的一种变体,设计用于解决长期依赖问题。它通过引入更新门和重置门来控制信息的遗忘和更新,提高了模型的表达能力和训练效率。

4129950fdd529f98cf3aa3aee8741e13_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  在电力负荷预测任务中,首先使用历史数据训练GRU网络。GRU的超参数,如学习率、隐藏层大小、层数等,是影响模型性能的关键因素。这些超参数通过PSO算法进行优化,以寻找使预测误差最小化的最优参数组合。

3.MATLAB核心程序

plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

% 设置训练选项
options = trainingOptions('adam', ...
    'MaxEpochs',200, ...
    'GradientThreshold',1, ...
    'InitialLearnRate',0.01, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.1, ...
    'Verbose',0, ...
    'Plots','training-progress');
net  = trainNetwork(P,T,layers,options);


ypred = predict(net,[P],'MiniBatchSize',1);


figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','GRU预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('GRU误差');



save R2.mat T ypred
0X_059m
相关文章
|
3天前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
5天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
9天前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
33 4
|
10天前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
9 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
8天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
1月前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
57 1
|
4天前
|
Shell Linux C语言
|
1天前
|
网络协议 Ubuntu Linux
|
9天前
|
Linux
linux网络统计信息和端口占用情况基本语法
linux网络统计信息和端口占用情况基本语法
|
16天前
|
网络协议 安全 Ubuntu
7 个有用的免费 Linux 网络隧道
【7月更文挑战第4天】
55 0
7 个有用的免费 Linux 网络隧道

热门文章

最新文章