m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。

1.算法仿真效果
matlab2022a仿真结果如下:

优化前:

image.png
image.png

优化后:

image.png
image.png

对比:

image.png

2.算法涉及理论知识概要
基于遗传算法(Genetic Algorithm, GA)优化的长门控循环单元(Gated Recurrent Unit, GRU)网络,是一种结合了进化计算与深度学习的混合预测模型,特别适用于电力负荷这类具有明显时间序列特性和复杂非线性特征的数据预测。

image.png

   GRU是循环神经网络(RNN)的一种变体,旨在解决长期依赖问题。相比传统的LSTM,GRU通过合并遗忘门和输入门为单一的更新门,减少了一个控制门,降低了模型的复杂度,同时保持了较好的学习长期依赖的能力。

image.png

   在电力负荷预测中,GA用于优化GRU网络的超参数,如学习率、隐藏层单元数、网络层数等,以获得最佳预测性能。具体流程如下:

定义问题:将GRU网络的超参数作为遗传算法的染色体,目标是最小化预测误差。

编码与初始化:将超参数编码为染色体,初始化种群。

适应度评估:使用历史电力负荷数据训练不同的GRU模型(基于当前种群中的不同超参数配置),计算预测误差作为适应度值。

遗传操作:基于适应度值进行选择、交叉和变异,生成新的超参数配置。

终止条件:当达到预定的迭代次数或适应度改善不明显时,停止进化,选择适应度最高的超参数配置。

模型训练与预测:使用优化后的超参数配置训练GRU模型,并进行电力负荷预测。

3.MATLAB核心程序

MAXGEN = 50;
NIND   = 20;
Nums   = 1; 
Chrom  = crtbp(NIND,Nums*10);

%sh
Areas = [];
for i = 1:1
    Areas = [Areas,[1;100]];% 目标范围0到4,如果是0,则表明该位置不安装充电桩
end

FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];

gen   = 0;
Js    = 0.5*rand(NIND,1);
Objv  = (Js+eps);
gen   = 0; 



while gen < MAXGEN
      gen
      Pe0 = 0.999;
      pe1 = 0.001; 

      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,Pe0);   
      Selch=mut( Selch,pe1);   
      phen1=bs2rv(Selch,FieldD);   

      for a=1:1:NIND  
          X           = phen1(a);
          %计算对应的目标值
          [epls]      = func_obj(X);
          E           = epls;
          JJ(a,1)     = E;
      end 

      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 


      Error2(gen) = mean(JJ);
end 
figure
plot(smooth(Error2,MAXGEN),'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X     = phen1(I);


numFeatures    = 2;
numResponses   = 1;
numHiddenUnits = round(X);% 定义隐藏层中LSTM单元的数量
layers = [ ...% 定义网络层结构
    sequenceInputLayer(numFeatures) 
    gruLayer(numHiddenUnits)
    dropoutLayer(0.1) 
    gruLayer(2*numHiddenUnits)
    dropoutLayer(0.1)
    fullyConnectedLayer(numResponses)
    regressionLayer
    ];

ypred = predict(net,[P],'MiniBatchSize',1);


figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','GRU预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('GRU误差');

save R2.mat T ypred
相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
14 2
|
4天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。
|
3天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全策略
【10月更文挑战第39天】随着云计算的飞速发展,越来越多的企业和个人将数据和服务迁移到云端。然而,随之而来的网络安全问题也日益突出。本文将从云计算的基本概念出发,深入探讨在云服务中如何实施有效的网络安全和信息安全措施。我们将分析云服务模型(IaaS, PaaS, SaaS)的安全特性,并讨论如何在这些平台上部署安全策略。文章还将涉及最新的网络安全技术和实践,旨在为读者提供一套全面的云计算安全解决方案。
|
3天前
|
存储 安全 网络安全
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第39天】在数字化时代,网络安全与信息安全成为保护个人隐私和组织资产的重要屏障。本文将探讨网络安全中的常见漏洞、加密技术的应用以及提升安全意识的重要性。通过具体案例分析,我们将深入了解网络攻击的手段和防御策略,同时提供实用建议,以增强读者对网络安全的认识和防护能力。
|
3天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和建议来保护个人信息和设备安全。
|
6天前
|
SQL 安全 物联网
网络安全与信息安全:深入探讨网络漏洞、加密技术及安全意识###
网络安全与信息安全是当今数字化时代的重要议题。本文将详细探讨网络安全和信息安全的差异,重点介绍常见的网络漏洞、加密技术以及如何提升用户和组织的安全意识。通过具体案例和技术分析,帮助读者理解这些关键概念,并提供实用的建议以应对潜在的网络威胁。 ###
|
6天前
|
安全 网络安全 API
揭秘网络世界的守护神:网络安全与信息安全的深度剖析
【10月更文挑战第36天】在数字时代的洪流中,网络安全和信息安全如同守护神一般,保护着我们的数据不受侵犯。本文将深入探讨网络安全漏洞的成因、加密技术的奥秘以及提升个人安全意识的重要性。通过分析最新的攻击手段、介绍先进的防御策略,并分享实用的安全实践,旨在为读者呈现一个全方位的网络安全与信息安全知识图谱。让我们一同揭开网络世界的神秘面纱,探索那些不为人知的安全秘籍。
24 6