基于霍夫变换的航迹起始算法研究(Matlab代码实现)

简介: 基于霍夫变换的航迹起始算法研究(Matlab代码实现)

💥1 概述

一、设计内容

利用Hough变换处理量测得到的含杂波的二维坐标,解决多目标航迹起始问题。使用Matlab进行仿真,用离散点绘制原始数据,用连线绘制处理结果。


二、主要技术指标


1、掌握标准Hough变换检测直线的基本原理,以及一些改进的Hough变换算法。


2、用Matlab实现Hough变换算法,并绘制处理结果。


航迹起始是航迹处理中的首要问题,在各种航迹处理的情况下都存在,对于多目标航迹处理来说,航迹起始是第一步,是进行航迹跟踪的基础。 由于被探测目标一般都是由远到近的出现在搜索雷达的有效探测范围内的,在航迹起始时,目标一般距离雷达较远,此时雷达分辨力低、测量精度差,加之真假目标的出现无真正的统计规律,因此在搜索雷达数据处理技术中,航迹起始问题是一个难题。 现有的航迹起始算法可分为顺序处理技术和批处理技术两大类。通常,顺序数据处理技术适用于弱杂波环境中的航迹起始,主要包括启发式规则方法和基于逻辑方法;批处理技术则更适用于强杂波环境,主要包括Hough变换等方法。基于逻辑的方法在虚警概率比较低的情况下,起始航迹的效果比较好,但在复杂环境下虚假航迹比较多;Hough变换法则适用于强杂波背景下航迹成直线的环境,但是Hough变换法通常需要多次的扫描才能较好地起始航迹,且计算量大不符合工程应用的需要。


低信噪比、低信杂比下的航迹起始是多目标航迹起始的关键问题。Hough变换具有对局部缺损的不敏感性、对随机噪声的鲁棒性以及适于并行处理、实时应用等特点,特别史和解决多目标航迹起始问题。本文对Hough变换航迹起始算法进行了研究,主要工作如下:


1.概述了主要的航迹起始方法,介绍了Hough变换基本原理、Hough变换的特点,指出了Hough变换在航迹起始中存在的问题。


2.研究与分析了标准Hough变换、修正Hough变换和序列Hough变换三种典型航迹起始算法。通过仿真分析,总结出每种算法的适用环境。


Hough变换用于航迹起始具有以下特点:


(1)将量测空间中的检测问题转换到参数空间进行,具有很强的抗干扰能力,对随机噪声具有一定的鲁棒性;


(2)量测中的每一个点都参加“投票”,所以它特别适合并行处理;


(3)一种变换方程只对某一种特定的曲线进行检测,针对性强;


(4)不受空间和曲线形状的影响:广义Hough变换可以检测任意形状的曲线,三维空间Hough变换可以检测空间曲线。


Hough变换用于航迹起始具有以下优点:


(1)Hough变换可以检测任意已知形状的曲线,从而能够起始某类特定航迹,作为先验信息,特定航迹的选定提高了信号相干累积的效率,避免了大量杂波引起的虚假航迹问题;


(2)Hough变换不要求曲线连续或可导,并且对局部缺损和随机噪声鲁棒,适于低检测率和低量测精度下的起始;


(3)Hough变换用于航迹起始不需要目标状态初值,可实现全自动起始。


本文通过大量仿真实验体会到Hough变换航迹起始算法存在若干问题,严重地影响这航迹起始的性能,具体体现在:


(1)标准Hough变换的计算量庞大,并且需要很大的存储空间,在低信噪比环境下表现得特别明显,延长了航迹起始时间,达不到快速性起始的要求。


(2)Hough变换航迹起始算法在提取航迹参数时一般使用阈值法,这就不可避免的出现航迹簇拥现象,即一个目标产生了参数近似的多条轨迹。如何选择峰值提取方法既能准确地提取峰值,同时又能有效地解决航迹簇拥现象,是亟待解决的问题。


(3)Hough变换航迹起始算法应用于工程实际带来了诸多问题,如:实际系统中涉及参数众多,如何对这些参数进行全面有效地利用,是急需解决地问题;针对不同地起始环境应该研究不同地专用算法与之相匹配;实际系统中,很多参数地选取都不能由理论公式推导得出,而要通过大量得仿真实验得出。


📚2 运行结果

主函数部分代码:

%标准Hough变换
%Author:Shen Baoyin
%Time:2018/8/1
close all
clear all
target=2;%目标数
n=15;%起始拍数
k=90;%sig分的个数
m=500;%p分的个数
Monte_Carlo=100;%Monte_Carlo仿真次数
L=150;%雷达量测距离
Pd=1;%检测概率
%目标起始坐标及速度
x1=40;y1=20;vx1=0.3;vy1=0.18;%单位km,km/s
x2=20;y2=80;vx2=0.3;vy2=-0.18;
Ts=4;%采样周期,单位s
success=zeros(Monte_Carlo,target);%目标航迹成功起始矩阵
fake(1:Monte_Carlo)=0;%目标航迹虚假起始矩阵
track_number(1:Monte_Carlo)=0;%总航迹起始数
N=0:n-1;
X1_init=x1+Ts*N*vx1;%真实航迹1
Y1_init=y1+Ts*N*vy1;
Y1_0=y1-vy1*x1/vx1;
offset(1)=Y1_0*cos(atan(abs(vy1)/abs(vx1)));%航迹1真实垂距
X2_init=x2+Ts*N*vx2;%真实航迹2
Y2_init=y2+Ts*N*vy2;
Y2_0=y2-vy2*x2/vx2;
offset(2)=Y2_0*cos(atan(abs(vy2)/abs(vx2)));%航迹2真实垂距
Np=1:k;
dNp=pi/k;%参数空间角度间隔
angle=(Np-1/2)*dNp;
dMp=6*0.1;%%参数空间垂距间隔
for monte=1:Monte_Carlo
    clear R Rn A0 P0 R X_za Y_za noisex noisey
    R = poissrnd(50,1,n);%每拍杂波个数,服从泊松分布
    Rn=R(1);
    X_za=unifrnd (0, 100, 1, R(1));%随机产生(x,y)坐标,服从0-100的均匀分布
    Y_za=unifrnd (0, 100, 1, R(1));
    for i=2:n
        X_za(Rn+1:Rn+R(i))=unifrnd (0, 100, 1, R(i));
        Y_za(Rn+1:Rn+R(i))=unifrnd (0, 100, 1, R(i));
        Rn=Rn+R(i);
    end
    noisex=normrnd(0,0.1,1,n);%x量测噪声
    noisey=normrnd(0,0.1,1,n);
    X1=X1_init+noisex;X2=X2_init+noisex;%实际量测
    Y1=Y1_init+noisey;Y2=Y2_init+noisey;
    A=zeros(k,2*m);%积累矩阵
    %航迹1 Hough变换
    for i=1:n
        for j=1:k
            P(i,j)=X1(i)*cos(angle(j))+Y1(i)*sin(angle(j));
        end
    end
    %航迹2 Hough变换
    for i=(n+1):(2*n)
        for j=1:k
            P(i,j)=X2(i-n)*cos(angle(j))+Y2(i-n)*sin(angle(j));
        end
    end
    %杂波的Hough变换
    for i=2*n+1:(2*n+Rn)
        for j=1:k
            P(i,j)=X_za(i-2*n)*cos(angle(j))+Y_za(i-2*n)*sin(angle(j));
        end
    end
    %对积累矩阵投票
    for i=1:k
        for j=1:2*m
            a=-L+(j-1)*dMp;
            b=-L+j*dMp;
           for h=1:2*n+Rn
               if (P(h,i)>=a && P(h,i)<b) 
                   A(i,j)=A(i,j)+1;
               end
           end
        end
    end

🎉3 参考文献

[1]高国琴,李明.基于K-means算法的温室移动机器人导航路径识别[J].农业工程学报,2014,30(07):25-33.

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
5天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
15天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
16天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
14天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
13天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
19天前
|
算法
经典航迹关联算法
经典航迹关联算法,包括加权关联,序贯关联,模糊关联,以及小波处理后性能对比仿真
22 4
|
19天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
18天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

热门文章

最新文章