【机器学习实战项目】10分钟学会Python怎么用Logistic回归进行分类预测(一)

简介: 【机器学习实战项目】10分钟学会Python怎么用Logistic回归进行分类预测(一)

[toc]

1 前言

1.1 Logistic回归的介绍

逻辑回归(Logistic regression,简称LR)是一种经典的二分类算法,它将输入特征与一个sigmoid函数进行线性组合,从而预测输出标签的概率。该算法常被用于预测离散的二元结果,例如是/否、真/假等。

优点:

  • 实现简单。Logistic回归的参数可以用极大似然估计法进行求解,算法本身非常简单。
  • 速度快。Logistic回归计算量小,训练速度快。
  • 输出结果易于理解。Logistic回归的输出结果是概率,易于解释。
  • 容易扩展。Logistic回归可用于多分类问题和不平衡数据集。

缺点:

  • 只适用于线性可分的问题。当特征之间存在非线性关系时,Logistic回归的效果会受到限制。
  • 对异常值敏感。由于Logistic回归使用了sigmoid函数,对于异常值非常敏感。
  • 容易欠拟合。当特征与目标变量之间的关系非常复杂时,Logistic回归很容易出现欠拟合现象。

1.2 Logistic回归的应用

Logistic回归广泛应用于许多领域,包括:

  1. 金融风险评估。银行和信用卡公司使用Logistic回归来评估借款人的信用风险,预测贷款违约的概率。
  2. 医学诊断。Logistic回归可以用于预测患者是否患有某种疾病或病情的严重程度。
  3. 市场分析。Logistic回归可以用于预测产品或服务的市场需求,并帮助企业做出更好的决策。
  4. 自然语言处理。Logistic回归可以用于文本分类,例如判断一段文本是否属于某个主题或情感极性。
  5. 图像处理。Logistic回归可以用于图像分类和目标检测,例如识别数字和字母。

总之,Logistic回归是一种灵活的算法,可以应用于许多不同的领域和问题,特别是在需要预测二元结果的场景中表现出色。

2 iris数据集数据处理

iris数据集共有150个样本,目标变量为花的类别其都属于鸢尾属下的三个亚属(target),分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

四个特征,分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)。

2.1 导入函数

import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

2.2 导入数据

from sklearn.datasets import load_iris
data = load_iris() 
iris_target = data.target 
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

2.3 简单数据查看

## 查看数据的整体信息
iris_features.info()
## 查看每个类别数量
pd.Series(iris_target).value_counts()

## 查看head或tail
iris_features.head()
#iris_features.tail()

## 对于特征进行一些统计描述
iris_features.describe()

3 可视化

3.1 条形图/散点图

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

从结果可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

3.2 箱线图

## 构建画布2x2
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))
## 可视化
for i, col in enumerate(iris_features.columns):
    sns.boxplot(ax=axes[i//2, i%2], x='target', y=col, saturation=0.5, palette='pastel', data=iris_all)
    axes[i//2, i%2].set_title(col)
plt.tight_layout()
plt.show()

3.3 三维散点图

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')
iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()
plt.show()

4 建模预测

4.1 二分类预测

## 划分为训练集和测试集
from sklearn.model_selection import train_test_split
## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]
## 训练集测试集7/3分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.3, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 训练模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)
## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

## 预测模型
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics
## 利用accuracy(准确度)评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

结果准确度为1,代表所有的样本都预测正确了,绝杀

4.2 多分类预测

## 训练集测试集还是7/3分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.3, random_state = 2020)
## 建模 
clf = LogisticRegression(random_state=0, solver='lbfgs')
## 训练模型
clf.fit(x_train, y_train)

## 预测模型
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
## p = p(y=1|x,\theta)),预测模型概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)
print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。
## 利用accuracy评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

比起二分类的1略小,但均大于0.9

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

根据结果发现,其在三分类的结果的预测准确度上有所下降,但好在测试集还有91%,这是由于versicolor(1)virginica(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

5 讨论

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数

原理的简单解释:当z=>0时, y=>0.5,分类为1,当z<0时, y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值,而多分类其实就是将多个二分类的逻辑回归组合。

目录
相关文章
|
20小时前
|
机器学习/深度学习 传感器 物联网
【Python机器学习专栏】机器学习在物联网(IoT)中的集成
【4月更文挑战第30天】本文探讨了机器学习在物联网(IoT)中的应用,包括数据收集预处理、实时分析决策和模型训练更新。机器学习被用于智能家居、工业自动化和健康监测等领域,例如预测居民行为以优化能源效率和设备维护。Python是支持物联网项目机器学习集成的重要工具,文中给出了一个使用`scikit-learn`预测温度的简单示例。尽管面临数据隐私、安全性和模型解释性等挑战,但物联网与机器学习的结合将持续推动各行业的创新和智能化。
|
20小时前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。
|
20小时前
|
机器学习/深度学习 传感器 自动驾驶
【Python机器学习专栏】深度学习在自动驾驶中的应用
【4月更文挑战第30天】本文探讨了深度学习在自动驾驶汽车中的应用及其对技术发展的推动。深度学习通过模拟神经网络处理数据,用于环境感知、决策规划和控制执行。在环境感知中,深度学习识别图像和雷达数据;在决策规划上,学习人类驾驶行为;在控制执行上,实现精确的车辆控制。尽管面临数据需求、可解释性和实时性挑战,但通过数据增强、规则集成和硬件加速等方法,深度学习将持续优化自动驾驶性能,并在安全性和可解释性上取得进步。
|
20小时前
|
机器学习/深度学习 自然语言处理 PyTorch
【Python 机器学习专栏】自然语言处理中的深度学习应用
【4月更文挑战第30天】本文探讨了深度学习在自然语言处理(NLP)中的应用,包括文本分类、情感分析和机器翻译等任务。深度学习的优势在于自动特征学习、强大的表达能力和处理大规模数据的能力。常见模型如RNN、LSTM、GRU、CNN和注意力机制在NLP中发挥作用。Python的TensorFlow、PyTorch、NLTK和SpaCy等工具支持NLP研究。然而,数据稀缺、模型解释性和计算资源需求高等挑战仍待解决。随着技术进步,未来深度学习将进一步推动NLP发展,实现更智能的语言交互。
|
20小时前
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】文本分类的机器学习应用
【4月更文挑战第30天】文本分类是机器学习中的关键应用,涉及文本预处理、特征提取和模型训练等步骤。常见方法包括基于规则、关键词和机器学习(如朴素贝叶斯、SVM、深度学习)。Python中可使用scikit-learn进行文本分类,例如通过TF-IDF和朴素贝叶斯对新闻数据集进行处理。随着技术发展,未来将深入研究深度学习在文本分类中的应用及多模态数据的利用。
|
20小时前
|
机器学习/深度学习 算法 UED
【Python 机器学习专栏】A/B 测试在机器学习项目中的应用
【4月更文挑战第30天】A/B测试在数据驱动的机器学习项目中扮演关键角色,用于评估模型性能、算法改进和特征选择。通过定义目标、划分群组、实施处理、收集数据和分析结果,A/B测试能帮助优化模型和用户体验。Python提供工具如pandas和scipy.stats支持实验实施与分析。注意样本量、随机性、时间因素和多变量分析,确保测试有效性。A/B测试助力于持续改进机器学习项目,实现更好的成果。
|
20小时前
|
机器学习/深度学习 数据采集 前端开发
【Python机器学习专栏】模型泛化能力与交叉验证
【4月更文挑战第30天】本文探讨了机器学习中模型泛化能力的重要性,它是衡量模型对未知数据预测能力的关键。过拟合和欠拟合影响泛化能力,而交叉验证是评估和提升泛化能力的有效工具。通过K折交叉验证等方法,可以发现并优化模型,如调整参数、选择合适模型、数据预处理、特征选择和集成学习。Python中可利用scikit-learn的cross_val_score函数进行交叉验证。
|
20小时前
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】机器学习中的过拟合与欠拟合
【4月更文挑战第30天】机器学习中,模型性能受数据、算法及复杂度影响。过拟合(训练数据学得太好,泛化能力弱)和欠拟合(模型太简单,无法准确预测)是常见问题。理解两者概念、原因、影响及检测方法对构建有效模型至关重要。解决策略包括增加数据量、简化模型、添加特征或选择更复杂模型。使用交叉验证等工具可帮助检测和缓解过拟合、欠拟合。
|
20小时前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】机器学习中的模型融合技术
【4月更文挑战第30天】模型融合,即集成学习,通过结合多个模型提升预测性能。常见方法包括:Bagging(如Random Forest)、Boosting(如AdaBoost、XGBoost)和Stacking。Python中可使用`scikit-learn`实现,例如BaggingClassifier示例。模型融合是机器学习中的强大工具,能提高整体性能并适应复杂问题。
|
20小时前
|
机器学习/深度学习 Python
【Python 机器学习专栏】堆叠(Stacking)集成策略详解
【4月更文挑战第30天】堆叠(Stacking)是机器学习中的集成学习策略,通过多层模型组合提升预测性能。该方法包含基础学习器和元学习器两个阶段:基础学习器使用多种模型(如决策树、SVM、神经网络)学习并产生预测;元学习器则利用这些预测结果作为新特征进行学习,生成最终预测。在Python中实现堆叠集成,需划分数据集、训练基础模型、构建新训练集、训练元学习器。堆叠集成的优势在于提高性能和灵活性,但可能增加计算复杂度和过拟合风险。