基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)

简介: 基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)

基于python_opencv人脸录入、识别系统(应用dlib机器学习库)

近几年应用opencv机器学习方法识别人脸的技术成为了热潮,本人根据当今的识别技术与方法,历时四个多月开发出一套基于dlib机器学习库的识别项目。希望大家能一起交流学习。

项目英文名:Face recognition from camera with Dlib

1、项目功能介绍

  1. Tkinter 人脸录入界面, 支持录入时设置 (中文) 姓名;
  2. 调用摄像头进行人脸识别, 支持多张人脸同时识别;
  3. 定制显示名字, 可以写中文;

2、项目运行截图

下面直接上运行截图:

GUI界面运行结果: UI界面可以录入使用者的信息,并设置保存录入图片按钮

初次录入界面:

距离摄像头太近或太远会有提示:

中文识别界面运行结果: 识别信息包括开始录入时设置的名字,以及镜头下识别的人数

支持多人识别:

3、项目流程图

项目的流程图如下:

4、项目源码结构及模块化介绍(需要源码的朋友关注并私信我)

项目源码的结构如下:

  1. get_faces_from_camera_tkinter.py:进行人脸信息采集录入, Tkinter GUI
  2. get_face_from_camera.py:进行人脸信息采集录入, OpenCV GUI
  3. features_extraction_to_csv.py:提取所有录入人脸数据存入 features_all.csv
  4. face_reco_from_camera.py:调用摄像头进行实时人脸识别
  5. face_reco_from_camera_single_face.py:对于人脸数<=1, 调用摄像头进行实时人脸识别
  6. face_reco_from_camera_ot.py:利用 OT 算法, 调用摄像头进行实时人脸识别

Python详细源码模块化介绍:

人脸信息采集录入模块(get_face_from_camera.py):

  • 请注意存储人脸图片时, 矩形框不要超出摄像头范围, 要不然无法保存到本地;
  • 超出会有 “out of range” 的提醒;
class Face_Register:
    def __init__(self):
        self.path_photos_from_camera = "data/data_faces_from_camera/"
        self.font = cv2.FONT_ITALIC
        self.existing_faces_cnt = 0         # 已录入的人脸计数器 / cnt for counting saved faces
        self.ss_cnt = 0                     # 录入 personX 人脸时图片计数器 / cnt for screen shots
        self.current_frame_faces_cnt = 0    # 录入人脸计数器 / cnt for counting faces in current frame
        self.save_flag = 1                  # 之后用来控制是否保存图像的 flag / The flag to control if save
        self.press_n_flag = 0               # 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'
        # FPS
        self.frame_time = 0
        self.frame_start_time = 0
        self.fps = 0
        self.fps_show = 0
        self.start_time = time.time()
    # 新建保存人脸图像文件和数据 CSV 文件夹 / Mkdir for saving photos and csv
    def pre_work_mkdir(self):
        # 新建文件夹 / Create folders to save face images and csv
        if os.path.isdir(self.path_photos_from_camera):
            pass
        else:
            os.mkdir(self.path_photos_from_camera)
    # 删除之前存的人脸数据文件夹 / Delete old face folders
    def pre_work_del_old_face_folders(self):
        # 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
        folders_rd = os.listdir(self.path_photos_from_camera)
        for i in range(len(folders_rd)):
            shutil.rmtree(self.path_photos_from_camera+folders_rd[i])
        if os.path.isfile("data/features_all.csv"):
            os.remove("data/features_all.csv")
    # 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
    def check_existing_faces_cnt(self):
        if os.listdir("data/data_faces_from_camera/"):
            # 获取已录入的最后一个人脸序号 / Get the order of latest person
            person_list = os.listdir("data/data_faces_from_camera/")
            person_num_list = []
            for person in person_list:
                person_num_list.append(int(person.split('_')[-1]))
            self.existing_faces_cnt = max(person_num_list)
        # 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
        else:
            self.existing_faces_cnt = 0
    # 更新 FPS / Update FPS of Video stream
    def update_fps(self):
        now = time.time()
        # 每秒刷新 fps / Refresh fps per second
        if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
            self.fps_show = self.fps
        self.start_time = now
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now
    # 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
    def draw_note(self, img_rd):
        # 添加说明 / Add some notes
        cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "FPS:   " + str(self.fps_show.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
                    cv2.LINE_AA)
        cv2.putText(img_rd, "Faces: " + str(self.current_frame_faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
    # 获取人脸 / Main process of face detection and saving
    def process(self, stream):
        # 1. 新建储存人脸图像文件目录 / Create folders to save photos
        self.pre_work_mkdir()
        # 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件
        # / Uncomment if want to delete the saved faces and start from person_1
        # if os.path.isdir(self.path_photos_from_camera):
        #     self.pre_work_del_old_face_folders()
        # 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
        self.check_existing_faces_cnt()
        while stream.isOpened():
            flag, img_rd = stream.read()        # Get camera video stream
            kk = cv2.waitKey(1)
            faces = detector(img_rd, 0)         # Use Dlib face detector
            # 4. 按下 'n' 新建存储人脸的文件夹 / Press 'n' to create the folders for saving faces
            if kk == ord('n'):
                self.existing_faces_cnt += 1
                current_face_dir = self.path_photos_from_camera + "person_" + str(self.existing_faces_cnt)
                os.makedirs(current_face_dir)
                logging.info("\n%-40s %s", "新建的人脸文件夹 / Create folders:", current_face_dir)
                self.ss_cnt = 0                 # 将人脸计数器清零 / Clear the cnt of screen shots
                self.press_n_flag = 1           # 已经按下 'n' / Pressed 'n' already
            # 5. 检测到人脸 / Face detected
            if len(faces) != 0:
                # 矩形框 / Show the ROI of faces
                for k, d in enumerate(faces):
                    # 计算矩形框大小 / Compute the size of rectangle box
                    height = (d.bottom() - d.top())
                    width = (d.right() - d.left())
                    hh = int(height/2)
                    ww = int(width/2)
                    # 6. 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
                    if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
                        cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
                        color_rectangle = (0, 0, 255)
                        save_flag = 0
                        if kk == ord('s'):
                            logging.warning("请调整位置 / Please adjust your position")
                    else:
                        color_rectangle = (255, 255, 255)
                        save_flag = 1
                    cv2.rectangle(img_rd,
                                  tuple([d.left() - ww, d.top() - hh]),
                                  tuple([d.right() + ww, d.bottom() + hh]),
                                  color_rectangle, 2)
                    # 7. 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
                    img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
                    if save_flag:
                        # 8. 按下 's' 保存摄像头中的人脸到本地 / Press 's' to save faces into local images
                        if kk == ord('s'):
                            # 检查有没有先按'n'新建文件夹 / Check if you have pressed 'n'
                            if self.press_n_flag:
                                self.ss_cnt += 1
                                for ii in range(height*2):
                                    for jj in range(width*2):
                                        img_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
                                cv2.imwrite(current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", img_blank)
                                logging.info("%-40s %s/img_face_%s.jpg", "写入本地 / Save into:",
                                             str(current_face_dir), str(self.ss_cnt))
                            else:
                                logging.warning("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")
            self.current_frame_faces_cnt = len(faces)
            # 9. 生成的窗口添加说明文字 / Add note on cv2 window
            self.draw_note(img_rd)
            # 10. 按下 'q' 键退出 / Press 'q' to exit
            if kk == ord('q'):
                break
            # 11. Update FPS
            self.update_fps()
            cv2.namedWindow("camera", 1)
            cv2.imshow("camera", img_rd)
    def run(self):
        # cap = cv2.VideoCapture("video.mp4")   # Get video stream from video file
        cap = cv2.VideoCapture(0)               # Get video stream from camera
        self.process(cap)
        cap.release()
        cv2.destroyAllWindows()
def main():
    logging.basicConfig(level=logging.INFO)
    Face_Register_con = Face_Register()
    Face_Register_con.run()
if __name__ == '__main__':
    main()

进行人脸信息采集录入 Tkinter GUI(get_faces_from_camera_tkinter.py):

class Face_Register:
    def __init__(self):
        self.current_frame_faces_cnt = 0  # 当前帧中人脸计数器 / cnt for counting faces in current frame
        self.existing_faces_cnt = 0  # 已录入的人脸计数器 / cnt for counting saved faces
        self.ss_cnt = 0  # 录入 person_n 人脸时图片计数器 / cnt for screen shots
        # Tkinter GUI
        self.win = tk.Tk()
        self.win.title("Face Register @coneypo")
        # PLease modify window size here if needed
        self.win.geometry("1300x550")
        # GUI left part
        self.frame_left_camera = tk.Frame(self.win)
        self.label = tk.Label(self.win)
        self.label.pack(side=tk.LEFT)
        self.frame_left_camera.pack()
        # GUI right part
        self.frame_right_info = tk.Frame(self.win)
        self.label_cnt_face_in_database = tk.Label(self.frame_right_info, text=str(self.existing_faces_cnt))
        self.label_fps_info = tk.Label(self.frame_right_info, text="")
        self.input_name = tk.Entry(self.frame_right_info)
        self.input_name_char = ""
        self.label_warning = tk.Label(self.frame_right_info)
        self.label_face_cnt = tk.Label(self.frame_right_info, text="Faces in current frame: ")
        self.log_all = tk.Label(self.frame_right_info)
        self.font_title = tkFont.Font(family='Helvetica', size=20, weight='bold')
        self.font_step_title = tkFont.Font(family='Helvetica', size=15, weight='bold')
        self.font_warning = tkFont.Font(family='Helvetica', size=15, weight='bold')
        self.path_photos_from_camera = "data/data_faces_from_camera/"
        self.current_face_dir = ""
        self.font = cv2.FONT_ITALIC
        # Current frame and face ROI position
        self.current_frame = np.ndarray
        self.face_ROI_image = np.ndarray
        self.face_ROI_width_start = 0
        self.face_ROI_height_start = 0
        self.face_ROI_width = 0
        self.face_ROI_height = 0
        self.ww = 0
        self.hh = 0
        self.out_of_range_flag = False
        self.face_folder_created_flag = False
        # FPS
        self.frame_time = 0
        self.frame_start_time = 0
        self.fps = 0
        self.fps_show = 0
        self.start_time = time.time()
        self.cap = cv2.VideoCapture(0)  # Get video stream from camera
        # self.cap = cv2.VideoCapture("test.mp4")   # Input local video
    # 删除之前存的人脸数据文件夹 / Delete old face folders
    def GUI_clear_data(self):
        # 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
        folders_rd = os.listdir(self.path_photos_from_camera)
        for i in range(len(folders_rd)):
            shutil.rmtree(self.path_photos_from_camera + folders_rd[i])
        if os.path.isfile("data/features_all.csv"):
            os.remove("data/features_all.csv")
        self.label_cnt_face_in_database['text'] = "0"
        self.existing_faces_cnt = 0
        self.log_all["text"] = "Face images and `features_all.csv` removed!"
    def GUI_get_input_name(self):
        self.input_name_char = self.input_name.get()
        self.create_face_folder()
        self.label_cnt_face_in_database['text'] = str(self.existing_faces_cnt)
    def GUI_info(self):
        tk.Label(self.frame_right_info,
                 text="Face register",
                 font=self.font_title).grid(row=0, column=0, columnspan=3, sticky=tk.W, padx=2, pady=20)
        tk.Label(self.frame_right_info,
                 text="FPS: ").grid(row=1, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
        self.label_fps_info.grid(row=1, column=2, sticky=tk.W, padx=5, pady=2)
        tk.Label(self.frame_right_info,
                 text="Faces in database: ").grid(row=2, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
        self.label_cnt_face_in_database.grid(row=2, column=2, columnspan=3, sticky=tk.W, padx=5, pady=2)
        tk.Label(self.frame_right_info,
                 text="Faces in current frame: ").grid(row=3, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
        self.label_face_cnt.grid(row=3, column=2, columnspan=3, sticky=tk.W, padx=5, pady=2)
        self.label_warning.grid(row=4, column=0, columnspan=3, sticky=tk.W, padx=5, pady=2)
        # Step 1: Clear old data
        tk.Label(self.frame_right_info,
                 font=self.font_step_title,
                 text="Step 1: Clear face photos").grid(row=5, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
        tk.Button(self.frame_right_info,
                  text='Clear',
                  command=self.GUI_clear_data).grid(row=6, column=0, columnspan=3, sticky=tk.W, padx=5, pady=2)
        # Step 2: Input name and create folders for face
        tk.Label(self.frame_right_info,
                 font=self.font_step_title,
                 text="Step 2: Input name").grid(row=7, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
        tk.Label(self.frame_right_info, text="Name: ").grid(row=8, column=0, sticky=tk.W, padx=5, pady=0)
        self.input_name.grid(row=8, column=1, sticky=tk.W, padx=0, pady=2)
        tk.Button(self.frame_right_info,
                  text='Input',
                  command=self.GUI_get_input_name).grid(row=8, column=2, padx=5)
        # Step 3: Save current face in frame
        tk.Label(self.frame_right_info,
                 font=self.font_step_title,
                 text="Step 3: Save face image").grid(row=9, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
        tk.Button(self.frame_right_info,
                  text='Save current face',
                  command=self.save_current_face).grid(row=10, column=0, columnspan=3, sticky=tk.W)
        # Show log in GUI
        self.log_all.grid(row=11, column=0, columnspan=20, sticky=tk.W, padx=5, pady=20)
        self.frame_right_info.pack()
    # 新建保存人脸图像文件和数据 CSV 文件夹 / Mkdir for saving photos and csv
    def pre_work_mkdir(self):
        # 新建文件夹 / Create folders to save face images and csv
        if os.path.isdir(self.path_photos_from_camera):
            pass
        else:
            os.mkdir(self.path_photos_from_camera)
    # 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
    def check_existing_faces_cnt(self):
        if os.listdir("data/data_faces_from_camera/"):
            # 获取已录入的最后一个人脸序号 / Get the order of latest person
            person_list = os.listdir("data/data_faces_from_camera/")
            person_num_list = []
            for person in person_list:
                person_order = person.split('_')[1].split('_')[0]
                person_num_list.append(int(person_order))
            self.existing_faces_cnt = max(person_num_list)
        # 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
        else:
            self.existing_faces_cnt = 0
    # 更新 FPS / Update FPS of Video stream
    def update_fps(self):
        now = time.time()
        # 每秒刷新 fps / Refresh fps per second
        if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
            self.fps_show = self.fps
        self.start_time = now
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now
        self.label_fps_info["text"] = str(self.fps.__round__(2))
    def create_face_folder(self):
        # 新建存储人脸的文件夹 / Create the folders for saving faces
        self.existing_faces_cnt += 1
        if self.input_name_char:
            self.current_face_dir = self.path_photos_from_camera + \
                                    "person_" + str(self.existing_faces_cnt) + "_" + \
                                    self.input_name_char
        else:
            self.current_face_dir = self.path_photos_from_camera + \
                                    "person_" + str(self.existing_faces_cnt)
        os.makedirs(self.current_face_dir)
        self.log_all["text"] = "\"" + self.current_face_dir + "/\" created!"
        logging.info("\n%-40s %s", "新建的人脸文件夹 / Create folders:", self.current_face_dir)
        self.ss_cnt = 0  # 将人脸计数器清零 / Clear the cnt of screen shots
        self.face_folder_created_flag = True  # Face folder already created
    def save_current_face(self):
        if self.face_folder_created_flag:
            if self.current_frame_faces_cnt == 1:
                if not self.out_of_range_flag:
                    self.ss_cnt += 1
                    # 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
                    self.face_ROI_image = np.zeros((int(self.face_ROI_height * 2), self.face_ROI_width * 2, 3),
                                                   np.uint8)
                    for ii in range(self.face_ROI_height * 2):
                        for jj in range(self.face_ROI_width * 2):
                            self.face_ROI_image[ii][jj] = self.current_frame[self.face_ROI_height_start - self.hh + ii][
                                self.face_ROI_width_start - self.ww + jj]
                    self.log_all["text"] = "\"" + self.current_face_dir + "/img_face_" + str(
                        self.ss_cnt) + ".jpg\"" + " saved!"
                    self.face_ROI_image = cv2.cvtColor(self.face_ROI_image, cv2.COLOR_BGR2RGB)
                    cv2.imwrite(self.current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", self.face_ROI_image)
                    logging.info("%-40s %s/img_face_%s.jpg", "写入本地 / Save into:",
                                 str(self.current_face_dir), str(self.ss_cnt) + ".jpg")
                else:
                    self.log_all["text"] = "Please do not out of range!"
            else:
                self.log_all["text"] = "No face in current frame!"
        else:
            self.log_all["text"] = "Please run step 2!"
    def get_frame(self):
        try:
            if self.cap.isOpened():
                ret, frame = self.cap.read()
                return ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        except:
            print("Error: No video input!!!")
    # 获取人脸 / Main process of face detection and saving
    def process(self):
        ret, self.current_frame = self.get_frame()
        faces = detector(self.current_frame, 0)
        # Get frame
        if ret:
            self.update_fps()
            self.label_face_cnt["text"] = str(len(faces))
            # 检测到人脸 / Face detected
            if len(faces) != 0:
                # 矩形框 / Show the ROI of faces
                for k, d in enumerate(faces):
                    self.face_ROI_width_start = d.left()
                    self.face_ROI_height_start = d.top()
                    # 计算矩形框大小 / Compute the size of rectangle box
                    self.face_ROI_height = (d.bottom() - d.top())
                    self.face_ROI_width = (d.right() - d.left())
                    self.hh = int(self.face_ROI_height / 2)
                    self.ww = int(self.face_ROI_width / 2)
                    # 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
                    if (d.right() + self.ww) > 640 or (d.bottom() + self.hh > 480) or (d.left() - self.ww < 0) or (
                            d.top() - self.hh < 0):
                        self.label_warning["text"] = "OUT OF RANGE"
                        self.label_warning['fg'] = 'red'
                        self.out_of_range_flag = True
                        color_rectangle = (255, 0, 0)
                    else:
                        self.out_of_range_flag = False
                        self.label_warning["text"] = ""
                        color_rectangle = (255, 255, 255)
                    self.current_frame = cv2.rectangle(self.current_frame,
                                                       tuple([d.left() - self.ww, d.top() - self.hh]),
                                                       tuple([d.right() + self.ww, d.bottom() + self.hh]),
                                                       color_rectangle, 2)
            self.current_frame_faces_cnt = len(faces)
            # Convert PIL.Image.Image to PIL.Image.PhotoImage
            img_Image = Image.fromarray(self.current_frame)
            img_PhotoImage = ImageTk.PhotoImage(image=img_Image)
            self.label.img_tk = img_PhotoImage
            self.label.configure(image=img_PhotoImage)
        # Refresh frame
        self.win.after(20, self.process)
    def run(self):
        self.pre_work_mkdir()
        self.check_existing_faces_cnt()
        self.GUI_info()
        self.process()
        self.win.mainloop()
def main():
    logging.basicConfig(level=logging.INFO)
    Face_Register_con = Face_Register()
    Face_Register_con.run()
if __name__ == '__main__':
    main()

提取人脸数据存入 CSV(features_extraction_to_csv.py):

  • 会生成一个存储所有特征人脸数据的 features_all.csv
  • Size: n*129
# 要读取人脸图像文件的路径 / Path of cropped faces
path_images_from_camera = "data/data_faces_from_camera/"
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
# 返回单张图像的 128D 特征 / Return 128D features for single image
# Input:    path_img           <class 'str'>
# Output:   face_descriptor    <class 'dlib.vector'>
def return_128d_features(path_img):
    img_rd = cv2.imread(path_img)
    faces = detector(img_rd, 1)
    logging.info("%-40s %-20s", "检测到人脸的图像 / Image with faces detected:", path_img)
    # 因为有可能截下来的人脸再去检测,检测不出来人脸了, 所以要确保是 检测到人脸的人脸图像拿去算特征
    # For photos of faces saved, we need to make sure that we can detect faces from the cropped images
    if len(faces) != 0:
        shape = predictor(img_rd, faces[0])
        face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
    else:
        face_descriptor = 0
        logging.warning("no face")
    return face_descriptor
# 返回 personX 的 128D 特征均值 / Return the mean value of 128D face descriptor for person X
# Input:    path_face_personX        <class 'str'>
# Output:   features_mean_personX    <class 'numpy.ndarray'>
def return_features_mean_personX(path_face_personX):
    features_list_personX = []
    photos_list = os.listdir(path_face_personX)
    if photos_list:
        for i in range(len(photos_list)):
            # 调用 return_128d_features() 得到 128D 特征 / Get 128D features for single image of personX
            logging.info("%-40s %-20s", "正在读的人脸图像 / Reading image:", path_face_personX + "/" + photos_list[i])
            features_128d = return_128d_features(path_face_personX + "/" + photos_list[i])
            # 遇到没有检测出人脸的图片跳过 / Jump if no face detected from image
            if features_128d == 0:
                i += 1
            else:
                features_list_personX.append(features_128d)
    else:
        logging.warning("文件夹内图像文件为空 / Warning: No images in%s/", path_face_personX)
    # 计算 128D 特征的均值 / Compute the mean
    # personX 的 N 张图像 x 128D -> 1 x 128D
    if features_list_personX:
        features_mean_personX = np.array(features_list_personX, dtype=object).mean(axis=0)
    else:
        features_mean_personX = np.zeros(128, dtype=object, order='C')
    return features_mean_personX
def main():
    logging.basicConfig(level=logging.INFO)
    # 获取已录入的最后一个人脸序号 / Get the order of latest person
    person_list = os.listdir("data/data_faces_from_camera/")
    person_list.sort()
    with open("data/features_all.csv", "w", newline="") as csvfile:
        writer = csv.writer(csvfile)
        for person in person_list:
            # Get the mean/average features of face/personX, it will be a list with a length of 128D
            logging.info("%sperson_%s", path_images_from_camera, person)
            features_mean_personX = return_features_mean_personX(path_images_from_camera + person)
            if len(person.split('_', 2)) == 2:
                # "person_x"
                person_name = person
            else:
                # "person_x_tom"
                person_name = person.split('_', 2)[-1]
            features_mean_personX = np.insert(features_mean_personX, 0, person_name, axis=0)
            # features_mean_personX will be 129D, person name + 128 features
            writer.writerow(features_mean_personX)
            logging.info('\n')
        logging.info("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
if __name__ == '__main__':
    main()

基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)+

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
27天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
58 4
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
28 4
基于Python深度学习的果蔬识别系统实现
|
6天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
43 12
|
18天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
48 4
|
22天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
|
27天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
93 1
|
1月前
|
Python
Python之音乐专辑管理系统
音乐专辑管理系统是一款用于管理和维护音乐专辑信息的应用程序,支持添加、删除、修改和查询专辑详情(如专辑名、艺术家、发行日期及曲目列表)。系统运行需Python 3.x环境,硬件要求较低,适合个人及小型团队使用。
51 4
|
1月前
|
Python
Python实现摇号系统
本文介绍了如何使用Python构建一个简单的摇号系统,包括用户输入、随机抽取、结果展示和日志记录等功能。通过导入`random`、`datetime`和`logging`模块,实现了从参与者名单中随机抽取中奖者,并记录每次摇号的结果,方便后续查看和审计。完整代码示例提供了从功能实现到主程序调用的全过程。
35 2
下一篇
DataWorks