BP神经网络对水质问题进行预测(Matlab代码实现)

简介: BP神经网络对水质问题进行预测(Matlab代码实现)

💥1 概述

在大数据、人工智能的背景下,神经网络算法被广泛的应用和普及,风险预测问题成为人们关注的热点,BP神经网络算法是用于解决预测问题效果最好的算法之一,但传统的BP神经网络算法在隐含层权值选择过程具有一定的局限性,会影响算法预测的效率和精度。针对这种情况,提出了改进的BP神经网络算法,利用遗传算法和BP神经网络算法相结合,提升算法的预测效率和预测精度。首先,分析传统BP神经网络算法流程及不足;其次,利用遗传算法优化BP神经网络算法;最后,提出改进的BP神经网络算法执行流程,并以食品价格数据进行对比分析。通过实验分析结果可知,相对于传统的BP神经网络算法,该方法在预测过程中可以提高预测效率、提升预测精度。本文章采用BP算法并训练使用的数据集404个水质数据对水质问题进行预测。


📚2 运行结果

部分代码:

clc 
clear all 
load out2.mat
load train.mat
outrec = outrec';
ml = [2.35500000000000,0.110000000000000,6.50000000000000,323.500000000000];
mm = [10.9945239746905,69.0063006300631,-6.66869763899466,-0.319387271030040];
for j = 1:4
    for i = 1:404
        outrec(i,j) = outrec(i,j)*ml(j)+mm(j);
    end
end
for j = 1:4
    for i = 1:404
        traind_s(i,j) = traind_s(i,j)*ml(j)+mm(j);
    end
end
xunlian = 250;
yuce = 152;
a = 1:xunlian;
b = xunlian+1:xunlian+yuce;
figure(1)
%% 拟合曲线
title('fitted');
zzl = 1;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('temperature');
legend('measured value','fitted value');
zzl =2;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('pH');
legend('measured value','fitted value');
zzl = 3;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('Do');
legend('measured value','fitted value');
zzl = 4;
subplot(2,2,zzl);
plot(a,traind_s(1:xunlian,zzl),'b');
hold on 
plot(a+10,outrec(1:xunlian,zzl),'r');
hold off 
xlabel('time');
ylabel('ORP');
legend('measured value','fitted value');
%% 预测曲线
figure(2)
zzl = 1;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('temperature');
legend('measured value','predicted value');
zzl = 2;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('pH');
legend('measured value','predicted value');
zzl = 3;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('DO');
legend('measured value','predicted value');
zzl = 4;
subplot(2,2,zzl);
plot(b,traind_s(xunlian+1:xunlian+yuce,zzl),'b');
hold on 
plot(b+10,outrec(xunlian+1:xunlian+yuce,zzl),'r');
hold off 
xlabel('time');
ylabel('ORP');
legend('measured value','predicted value');

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘红梅,徐英岚,张博,李荣.基于最小二乘支持向量回归的水质预测[J].计算机与现代化,2019(09):31-34.

[2]邬希可.改进的神经网络算法在预测方法中研究与应用[J].计算机与数字工程,2022,50(10):2276-2279+2344.

🌈4 Matlab代码实现


相关文章
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
20天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
7天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
8天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
27 10
|
9天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
36 10
|
9天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
11天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
7天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。
|
8天前
|
安全 算法 网络协议
网络安全与信息安全知识分享
本文深入探讨了网络安全漏洞、加密技术以及安全意识三个方面,旨在帮助读者更好地理解和应对网络安全威胁。通过分析常见的网络安全漏洞类型及其防范措施,详细介绍对称加密和非对称加密的原理和应用,并强调提高个人和企业安全意识的重要性,为构建更安全的网络环境提供指导。
22 2