【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!

简介: YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240715230851343

摘要

视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸如目标检测和语义分割等一般计算机视觉任务时面临困难。分层Transformer(例如Swin Transformer)重新引入了几种ConvNet先验知识,使得Transformer在实际应用中成为通用的视觉骨干,并在各种视觉任务中表现出色。然而,这种混合方法的有效性很大程度上仍归因于Transformer的内在优势,而不是卷积的固有归纳偏差。在这项工作中,我们重新审视了设计空间,并测试了纯ConvNet的极限。我们逐步将标准的ResNet“现代化”,朝着视觉Transformer的设计方向发展,并在此过程中发现了几个关键组件,这些组件对性能差异有贡献。经过这一探索,我们推出了一系列纯ConvNet模型,命名为ConvNeXt。这些模型完全由标准的ConvNet模块构建,与Transformer在准确性和可扩展性方面竞争,达到了87.8%的ImageNet top-1准确率,并在COCO检测和ADE20K分割中超过了Swin Transformer,同时保持了标准ConvNets的简单性和效率。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Transformer在视觉领域大放异彩?以后卷积怎么办呢?facebook 的研究人员就探究了这样一个问题。首先,SwinTransformer采用分层和窗口的设计,取得了非常好的性能。这说明卷积这种窗口的设计也是有用的,因此,研究人员通过对比卷积和Transformer的体系结构,设计了ConvNext。

(1)提升感受野,使用更大的卷积核(33-->77),但是更大的卷积核带来了更多的运算量,这就需要使用1*1的卷积调整通道和分组卷积了。

(2)将ReLU替换为GeLU,并设计了一个类似于Transformer的FFN层的结构,即在两层1*1的卷积中间使用激活函数

(3)归一化由BN变为LN,并类似于Transformer,使用更少的归一化层。

(4)降采样层:类似于Swin Transformer,使用2*2的卷积,stride为2,并使用LN稳定训练。

image-20240715230809328

核心代码


class ConvNeXt_Stem(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, groups=g, dilation=d)
        self.ln = LayerNorm(c2, eps=1e-6, data_format="channels_first")

    def forward(self, x):
        return self.ln(self.conv(x))


class ConvNeXt_Downsample(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, groups=g, dilation=d)
        self.ln = LayerNorm(c1, eps=1e-6, data_format="channels_first")

    def forward(self, x):
        return self.conv(self.ln(x))

task与yaml配置

详见: https://blog.csdn.net/shangyanaf/article/details/140451741

相关文章
|
1月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
44 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
74 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
59 13
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
74 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
71 12
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
|
1月前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
81 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
60 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
1月前
|
机器学习/深度学习 存储 大数据
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
47 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
1月前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
49 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
61 10
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合

热门文章

最新文章