【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之EfficientNet,高效的卷积神经网络,降低参数量

简介: YOLOv8专栏探讨了目标检测的创新改进,包括模型扩展和神经架构搜索。提出的新方法使用复合系数平衡网络的深度、宽度和分辨率,产生了EfficientNets系列,其在准确性和效率上超越了先前的ConvNets。EfficientNet-B7在ImageNet上达到84.3%的顶级准确率,同时保持较小的模型大小和更快的推理速度。文章提供了论文和代码链接,以及核心的EfficientNet模型构建Python代码。

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240715223214537

摘要

卷积神经网络(ConvNets)通常在固定的资源预算下开发,如果有更多资源可用,则会进行扩展以提高准确性。在本文中,我们系统地研究了模型扩展,并发现仔细平衡网络的深度、宽度和分辨率可以带来更好的性能。基于这一观察,我们提出了一种新的扩展方法,使用一个简单但非常有效的复合系数均匀扩展深度、宽度和分辨率的所有维度。我们展示了这种方法在扩展MobileNets和ResNet时的有效性。

为了进一步提高,我们使用神经架构搜索设计了一个新的基准网络,并将其扩展,获得了一系列称为EfficientNets的模型,这些模型比以前的ConvNets在准确性和效率方面都有了很大的提升。特别是,我们的EfficientNet-B7在ImageNet上实现了最先进的84.3%的top-1准确率,同时在推理时比现有的最佳ConvNet小8.4倍,快6.1倍。我们的EfficientNets在迁移学习任务中也表现良好,在CIFAR-100(91.7%)、Flowers(98.8%)和其他3个迁移学习数据集上实现了最先进的准确率,参数量减少了一个数量级。源码可在:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet 找到。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理


卷积神经网络(ConvNets)通常是在固定资源预算下开发的,当有更多资源可用时,可以通过增加网络深度(depth)、网络宽度(width)和输入图像分辨率(resolution)来提高精度。然而,手动调整这些参数组合非常困难,尤其在计算资源有限的情况下,不同参数的组合空间太大,难以穷举。

创新方法
本文提出了一种新的模型缩放方法,通过使用一个简单而高效的复合系数,从深度(depth)、宽度(width)和分辨率(resolution)三个维度放大网络。相比传统方法,该方法不会随意缩放网络的维度,结合神经结构搜索技术,可以获得最优的一组参数(复合系数)。

复合模型扩张方法

  1. 问题定义:卷积网络N可以分为多个阶段,每个阶段由多个相同结构的卷积层组成。
  2. 优化目标:在资源有限的情况下,最大化精度(Accuracy)。更大的网络具有更大的宽度、深度或分辨率,可以获得更高精度,但单一维度的扩展效果有限。
  3. 模型扩张的局限性:只对单一维度进行扩张的精度增益迅速饱和,说明需要平衡各个维度的扩张。

复合扩张方法的求解

  1. 求解参数:通过固定φ=1,通过网格搜索(grid search)得到最优的α、β、γ,得到基本模型EfficientNet-B0。
  2. 扩展模型:固定α、β、γ的值,通过调整φ的大小,获得EfficientNet-B1到B7。φ的大小决定了资源消耗的大小。

核心代码



import sys
sys.path.append('tpu/models/official/efficientnet')
from modeling.architecture import efficientnet_constants
from modeling.architecture import nn_blocks
from modeling.architecture import nn_ops
from official.efficientnet import efficientnet_builder


class Efficientnet(object):
  """Class to build EfficientNet family models."""

  def __init__(self,
               model_name):
    """EfficientNet initialization function.

    Args:
      model_name: string, the EfficientNet model name, e.g., `efficient-b0`.
    """
    self._model_name = model_name

  def __call__(self, inputs, is_training=False):
    """Returns features at various levels for EfficientNet model.

    Args:
      inputs: a `Tesnor` with shape [batch_size, height, width, 3] representing
        a batch of images.
      is_training: `bool` if True, the model is in training mode.

    Returns:
      a `dict` containing `int` keys for continuous feature levels [2, 3, 4, 5].
      The values are corresponding feature hierarchy in EfficientNet with shape
      [batch_size, height_l, width_l, num_filters].
    """
    _, endpoints = efficientnet_builder.build_model(
        inputs,
        self._model_name,
        training=is_training,
        override_params=None)
    u2 = endpoints['reduction_2']
    u3 = endpoints['reduction_3']
    u4 = endpoints['reduction_4']
    u5 = endpoints['reduction_5']
    return {
   2: u2, 3: u3, 4: u4, 5: u5}

task与yaml配置

详见: https://blog.csdn.net/shangyanaf/article/details/140451442

相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
167 55
|
23天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
129 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
26天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
72 3
图卷积网络入门:数学基础与架构设计
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
185 7
|
29天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
39 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
46 1
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)

热门文章

最新文章