图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响

简介: 【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。

在当今信息爆炸的时代,推荐系统在帮助用户从海量信息中筛选出感兴趣的内容方面发挥着重要作用。然而,传统的推荐系统在面对信息过载和数据噪声时,往往显得力不从心。为了解决这些问题,北京大学和香港大学的研究人员联合提出了一种名为SelfGNN(Self-Supervised Graph Neural Network)的新型推荐系统框架。

SelfGNN框架的提出,旨在通过图神经网络(GNN)和自监督学习技术,有效降低信息过载和数据噪声对推荐系统的影响。首先,SelfGNN利用图神经网络来捕捉用户行为之间的短期协作关系。与传统的序列模型不同,SelfGNN不仅关注个体用户的长期行为模式,还注重不同用户之间的短期交互模式。通过构建基于时间间隔的短期图,SelfGNN能够更好地捕捉到用户的实时兴趣和需求,从而提高推荐的准确性和时效性。

其次,SelfGNN还引入了自监督学习技术,以增强模型的鲁棒性。在实际应用中,用户的行为数据往往包含大量的噪声,如临时意图或误点击等。这些噪声会对推荐系统的准确性产生负面影响,尤其是在处理短期行为数据时。为了解决这个问题,SelfGNN采用了一种个性化的自增强学习结构,通过结合用户的长期兴趣和个人稳定性信息,对短期图中的噪声进行抑制。这样可以提高模型对噪声的容忍度,从而更好地适应真实世界的数据环境。

此外,SelfGNN还通过多粒度级别的动态行为建模和间隔融合技术,进一步提高了推荐的准确性。通过在多个时间尺度上对用户和物品进行表示学习,SelfGNN能够更好地捕捉到用户的兴趣变化和物品的流行趋势。同时,通过将不同时间间隔的图进行融合,SelfGNN还能够利用不同时间尺度上的信息,从而提供更全面、准确的推荐结果。

为了验证SelfGNN的性能,研究人员在四个真实世界的数据集上进行了广泛的实验。实验结果表明,与各种最先进的基线模型相比,SelfGNN在推荐准确性和鲁棒性方面都取得了显著的提升。这表明SelfGNN框架在解决信息过载和数据噪声问题上具有很大的潜力。

然而,尽管SelfGNN在实验中表现出色,但仍然存在一些潜在的挑战和局限性。首先,SelfGNN的计算复杂度相对较高,尤其是在处理大规模数据集时。这可能会限制其在实际应用中的可扩展性。其次,SelfGNN的性能在很大程度上依赖于图的构建质量和自监督学习的效果。如果图的构建不够准确,或者自监督学习的效果不佳,那么SelfGNN的性能可能会受到影响。

论文链接:https://arxiv.org/abs/2405.20878

目录
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
275 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
2月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
103 22
|
2月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
81 14
|
3月前
|
网络协议 物联网
VB6网络通信软件上位机开发,TCP网络通信,读写数据并处理,完整源码下载
本文介绍使用VB6开发网络通信上位机客户端程序,涵盖Winsock控件的引入与使用,包括连接服务端、发送数据(如通过`Winsock1.SendData`方法)及接收数据(利用`Winsock1_DataArrival`事件)。代码实现TCP网络通信,可读写并处理16进制数据,适用于自动化和工业控制领域。提供完整源码下载,适合学习VB6网络程序开发。 下载链接:[完整源码](http://xzios.cn:86/WJGL/DownLoadDetial?Id=20)
121 12
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
195 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
172 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
4月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
110 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
3月前
|
SQL Java 数据库连接
【YashanDB数据库】由于网络带宽不足导致的jdbc向yashandb插入数据慢
由于网络带宽不足导致的jdbc向yashandb插入数据慢
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
140 0
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
4月前
|
缓存 小程序 API
微信小程序网络请求与API调用:实现数据交互
本文深入探讨了微信小程序的网络请求与API调用,涵盖`wx.request`的基本用法、常见场景(如获取数据、提交表单、上传和下载文件)及注意事项(如域名配置、HTTPS协议、超时设置和并发限制)。通过一个简单案例,演示了如何实现小程序与服务器的数据交互。掌握这些技能将帮助你构建功能更丰富的应用。

热门文章

最新文章