matlab遗传算法工具箱

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 遗传算法(genetic algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。

       以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。

1理论基础

1.1遗传算法概述

       遗传算法(genetic algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。

       在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。基因组成的串就是染色体,或者称为基因型个体(individuals)。一定数量的个体组成了群体(population)。群体中个体的数目称为群体大小(population size),也称为群体规模。而各个个体对环境的适应程度叫做适应度(fitness)。

遗传算法的基本步骤如下:

       1.编码

       GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。

       2.初始群体的生成

       随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。GA以这N个串结构数据作为初始点开始进化。

       3.适应度评估

       适应度表明个体或解的优劣性。不同的问题,适应性函数的定义方式也不同。4、选择

选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。遗传算法通过选择过程体现这一思想,进行选择的原则是适应性强的个体为下一代贡献一个或多个后代的概率大。选择体现了达尔文的适者生存原则。

       5.交叉

       交叉操作是遗传算法中最主要的遗传操作。通过交叉操作可以得到新一代个体,新个体组合了其父辈个体的特性。交叉体现了信息交换的思想。

       6.变异

       变异首先在群体中随机选择一个个体,对于选中的个体以一定的概率随机地改变串结构数据中某个串的值。同生物界一样,GA中变异发生的概率很低,通常取值很小。

1.2谢菲尔德遗传算法工具箱

       1.工具箱简介

       谢菲尔德(Sheffield)遗传算法工具箱是英国谢菲尔德大学开发的遗传算法工具箱。该工具箱是用MATLAB高级语言编写的,对问题使用M文件编写,可以看见算法的源代码,与此匹配的是先进的MATLAB数据分析、可视化工具、特殊目的应用领域工具箱和展现给使用者具有研究遗传算法可能性的一致环境。该工具箱为遗传算法研究者和初次实验遗传算法的用户提供了广泛多样的实用函数。

       2.工具箱添加

       用户可以通过网络下载gatbx工具箱(官方github下载地址:gatbx)。然后把工具箱添加到本机的MATLAB环境中,该工具箱的安装步骤如下:

       (1)将工具箱文件夹复制到本地计算机中的工具箱目录下,路径为matlabroot\ toolbox。其中matlabroot为 MATLAB的安装根目录。

       (2)将工具箱所在的文件夹添加到MATLAB的搜索路径中,有两种方式可以实现,即命令行方式和图形用户界面方式。

       ①命令行方式:用户可以调用addpath命令来添加,例如:

str = [matlabroot, '\toolbox\gatbx'];
addpath(str)

image.gif

       ②图形用户界面方式:在 MATLAB主窗口上选择主页→设置路径菜单项,单击“添加文件夹”按钮。找到工具箱所在的文件夹( gatbx),单击“OK”按钮,则工具箱所在的文件夹出现在“设置路径”的最上端。单击“保存”按钮保存搜索路径的设置,然后单击“关闭”按钮关闭对话框。

image.gif

       (3)批量修改后缀

       该工具箱文件后缀为M,即*.M,matlab是区分大小写的,如果这一步没有操作,将会报错,在该文件路径下,新建txt,输入以下命令,并保存修改文件后缀为bat,点击运行:

ren *.M *.m

image.gif

       如果文件夹中.M后缀的文件并未修改为.m的后缀,可以通过一个中间后缀名进行修改,先将其后缀名转为.txt,再转为.m,也就是先输入下面的命令,并保存修改文件后缀为bat,点击运行:

ren *.M *.txt

image.gif

       所有.M后缀的文件都修改为了.txt后缀,然后再输入下面的命令并保存修改文件后缀为bat,点击运行:

ren *.txt *.m

image.gif

       这样就把所有文件的后缀名都改成了.m文件。如果还是不行的话。。。。。就一个一个手动改吧。

2案例背景

2.1问题描述

       1.简单一元函数优化

       利用遗传算法寻找以下函数的最小值:

image.gif

        2.多元函数优化

       利用遗传算法寻找以下函数的最大值:

image.gif

2.2解题思路及步骤

       将自变量在给定范围内进行编码,得到种群编码,按照所选择的适应度函数并通过遗传算法中的选择,交叉和变异对个体进行筛选和进化,使适应度值大的个体被保留,小的个体被淘汰,新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至满足条件,最后留下来的个体集中分布在最优解周围,筛选出其中最优的个体作为问题的解。

3 MATLAB程序实现

       下面详细介绍各部分常用的函数,其他的函数用户可以直接参考工具箱中的GATBXA2.PDF文档,其中有详细的用法介绍。

3.1 工具箱结构

       遗传算法工具箱中的主要函数如表1所列。

表1 遗传算法工具箱的主要函数列表

image.gif

image.gif

3.2遗传算法常用函数

       1.创建种群函数——crtbp功能:创建任意离散随机种群。调用格式:

% 调用格式1
[Chrom,Lind,Basev]= crtbp(Nind,Lind)
% 调用格式2
[Chrom,Lind,Basev]= crtbp(Nind,Base)
% 调用格式3
[Chrom,Lind,Base]= crtbp(Nind,Lind,Base)

image.gif

       格式①创建一个大小为Nind×Lind 的随机二进制矩阵,其中,Nind 为种群个体数,Lind为个体长度。返回种群编码Chrom和染色体基因位的基本字符向量 BaseV。

       格式②创建一个种群个体为Nind,个体的每位编码的进制数由Base 决定(Base 的列数即为个体长度)。

       格式③创建一个大小为Nind×Lind 的随机矩阵,个体的各位的进制数由Base决定﹐这时输入参数Lind可省略(Base 的列数即为Lind),即为格式②。

       【用法举例】使用函数crtbp创建任意离散随机种群的应用举例。

       (1)创建一个种群大小为5,个体长度为10的二进制随机种群:

[Chrom,Lind,BaseV] = crtbp(5,10)

image.gif

或者

[Chrom,Lind,BaseV] = crtbp(5,10,[2 2 2 2 2 2 2 2 2 2])

image.gif

或者

[Chrom,Lind,BaseV] = crtbp(5,[2 2 2 2 2 2 2 2 2 2])

image.gif

输出结果为:

image.gif

       2.适应度计算函数一—ranking功能:基于排序的适应度分配。调用格式:

% 调用格式1
Fitnv = ranking(Objv)
% 调用格式2
Eitnv = ranking(Objv,RFun)
% 调用格式3
Fitnv = ranking(Objv,RFun,SUBPOP)

image.gif

       格式①是按照个体的目标值ObjV(列向量)由小到大的顺序对个体进行排序的,并返回个体适应度值FitnV的列向量。

       格式②中RFun有三种情况: .

       (1)若RFun是一个在[1,2]区间内的标量,则采用线性排序,这个标量指定选择的压差。

       (2)若RFun是一个具有两个参数的向量,则RFun(2):指定排序方法,0为线性排序,1为非线性排序。RFun(1);对线性排序﹐标量指定的选择压差RFun(1)必须在[1,2]区间;对非线性排序,RFun(1)必须在[1, length(ObjV)一2]区间;如果为NAN,则 RFun(1)假设为2。

       (3)若RFun是长度为length(ObjV)的向量,则它包含对每一行的适应度值计算。格式③中的参数ObjV和RFun与格式①和格式②一致,参数SUBPOP是一个任选参数,指明在-ObjV中子种群的数量。省略SUBPOP或SUBPOP为NAN,则 SUBPOP=1。在ObjV中的所有子种群大小必须相同。如果ranking被调用于多子种群,则ranking 独立地对每个子种群执行。

       【用法举例】考虑具有10个个体的种群,其当前目标值如下:

ObjV = [1;2;3;4;5;10;9;8;7;6]

image.gif

       (1)使用线性排序和压差为⒉估算适应度:

Fitnv= ranking(ObjV)
% 或者
Fitnv= ranking(ObjV,[2,0])
% 或者
Fitnv= ranking(ObjV,[2,0],1)

image.gif

       运行结果如下:

image.gif

       (2〉使用RFun中的值估算适应度:

RFun = [3;5;7;10;14;18;25;30;40;50];
Fitnv = ranking(Objv, RFun)

image.gif

运行结果:

image.gif

       (3〉使用非线性排序,选择压差为2,在ObjV中有两个子种群估算适应度:

 

FitnV =ranking(ObjV,[2,1],2)

image.gif

运行结果:

image.gif

       3.选择函数——select 功能:从种群中选个体(高级函数)。 调用格式:

selCh = select(SEL_F,Chrom,Fitnv)
selCh = select(SEL_r,Chrom,Eitnv,GGAP)
selCh = select(SRL_F,Chrom,Fitnv,GGAP,SUBPOP)

image.gif

       SEL_F是一个字符串,包含一个低级选择函数名,如 rws 或 sus;

       FitnV是列向量,包舍种群 Chrom中个体的适应度值。这个适应度值表明了每个个体被 选择的预期概率。

       GGAP是可选参数,指出了代沟部分种群被复制。如果GGAP省略或为NAN,则GAP 假设为1.0。

       SUBPOP是一个可选参数,决定 Chrom 中子种群的数量。如果 SUBPOP 省略或为 NAN,则 sUBPOP=1。Chrom 中所有子种群必须有相同的大小。

       【用法举例】考虑以下具有8个个体的种群Chrom,适应度值为FitnV:

Chrom = [1 11 21;2 12 22;3 13 23;4 14 24;5 15 25;6 16 26;7 17 27;8 18 28]
FitnV = [1.50;1.35;1.21;1.07;0.92;0.78;0.64;0.5]

image.gif

使用随机遍历抽样 sus 选择8个个体

selch = select('sus',Chrom,FitnV)

image.gif

运行结果为:

image.gif

        4.交叉算子函数——recombin功能:重组个体(高级函数)。调用格式:

NewChrom = recombin(REC_r,Chrom)
NewChrom = recombin(REC_F,Chrom,Recopt)
NewChrom = recombin(REC_F,Chrom,RecOpt,SUBPOP)

image.gif

       recombin完成种群Chrom中个体的重组,在新种群NewChrom中返回重组后的个体。Chrom和NewChrom中的一行对应一个个体。

       REC_F是一个包含低级重组函数名的字符串,例如recdis或xovsp.

       RecOpt是一个指明交叉概率的任选参数,如省略或为NAN,将设为缺省值。

       SUBPOP是一个决定Chrom中子群个数的可选参数,如果省略或为NAN,则 SUBPOP为1。Chrom中的所有子种群必须有相同的大小。

       【用法举例】使用函数recombin对5个个体的种群进行重组。

Chrom = crtbp(5,10)
NewChrom = recombin('xovsp',Chrom)

image.gif

image.gif

        5.变异算子函数——mut功能:离散变异算子。

       调用格式:

NewChrom = mut(O1dChrom,Pm,Basev)

image.gif

OldChrom为当前种群,Pm为变异概率(省略时为0.7/Lind),BaseV指明染色体个体元素的变异的基本字符(省略时种群为二进制编码)。

       【用法举例】使用函数mut将当前种群变异为新种群。

       (1)种群为二进制编码:

oldChrom = crtbp(5,10)
NewChrom = mut(oldChrom)

image.gif

image.gif

        (2)种群为非二进制编码,创建一个长度为8、有6个个体的随机种群;

BaseV = [8 8 8 4 4 4 4 4];
[Chrom, Lind,BaseV] = crtbp(6,BaseV);
Chrom
NewChrom = mut(Chrom,0.7,BaseV)

image.gif

image.gif

        6.重插入函数———reins功能:重插入子代到种群。调用格式:

Chrom = reins(Chrom,SelCh)
Chrom = reins(Chrom,Se1Ch,SUBPOP)
Chrom = reins(Chrom,SelCh,SUBPOP, InsOpt,0bjvCh)
[Chrom,0bjVCh]= reins(Chrom,SelCh,SUBPOP,Ins0pt,0bjvCh,0bjvSel)

image.gif

       reins完成插人子代到当前种群,用子代代替父代并返回结果种群。Chrom为父代种群,SelCh为子代,每一行对应一个个体。

       SUBPOP是一个可选参数,指明Chrom和 SelCh中子种群的个数。如果省略或者为NAN,则假设为1。在Chrom和SelCh中每个子种群必须具有相同大小。

       InsOpt是一个最多有两个参数的任选向量。

       InsOpt(1)是一个标量,指明用子代代替父代的方法。0为均匀选择,子代代替父代使用均匀随机选择。1为基于适应度的选择,子代代替父代中适应度最小的个体。如果省略InsOpt(1)或InsOpt(1)为NAN,则假设为0。

       InsOpt(2)是一个在[o,1]区间的标量,表示每个子种群中重插入的子代个体在整个子种群中个体的比率。如果InsOpt(2)省略或为NAN,则假设InsOpt(2)=1.0。

       ObjVCh是一个可选列向量,包括Chrom中个体的目标值。对基于适应度的重插入,ObjVCh是必需的。

       ObjVSel是一个可选参数,包含SelCh中个体的目标值。如果子代的数量大于重插入种群中的子代数量﹐则ObjVSel是必需的。这种情况子代将按它们的适应度大小选择插人。

       【用法举例】在5个个体的父代种群中插入子代种群。

Chrom = crtbp(5,10)            % 父代
selch = crtbp(2,10)            % 子代
Chrom = reins(Chrom,selch)     % 重插入

image.gif

image.gif

       7.实用函数——bs2rv

       功能:二进制到十进制的转换。调用格式:

Phen = bs2rv(Chrom,FieldD)

image.gif

       bs2rv根据译码矩阵FieldD将二进制串矩阵Chrom 转换为实值向量,返回十进制的矩阵。

       矩阵FieldD有如下结构:

image.gif

       这个矩阵的组成如下:

       len是包含在Chrom中的每个子串的长度,注意sum(len)=size(Chrom,2)。lb和ub分别是每个变量的下界和上界。

       code指明子串是怎样编码的,1为标准的二进制编码,0为格雷编码。scale指明每个子串所使用的刻度,0表示算术刻度,1表示对数刻度。

       lbin和 ubin指明表示范围中是否包含边界。0表示不包含边界,1表示包含边界。

       【用法举例】先使用crtbp创建二进制种群Chrom,表示在[一1,10]区间的一组简单变量,然后使用bs2rv将二进制串转换为实值表现型。

Chrom = crtbp(4,8)                             % 创建二进制串
FieldD = [size(Chrom,2);-1;10;1;0;1;1]         % 包含边界
Phen = bs2rv(Chrom,FieldD)                     % 转换二进制到10进制

image.gif

image.gif

       8.实用函数—-rep功能:矩阵复制。

       调用格式: Matout = rep(MatIn,REPN)

       函数rep完成矩阵MatIn的复制,REPN指明复制次数,返回复制后的矩阵 MatOut。REPN包含每个方向复制的次数,REPN(1)表示纵向复制次数,REPN(2)表示水平方向复制次数。

       【用法举例】使用函数rep 复制矩阵MatIn。

MatIn = [1 2 3 4;5 6 7 8]
MatOut = rep(MatIn,[1,2])

image.gif

image.gif

3.3遗传算法工具箱应用举例

       本节通过一些具体的例子来介绍遗传算法工具箱函数的使用。

1.简单一元函数优化

       利用遗传算法计算以下函数的最小值:

image.gif

        选择二进制编码,遗传算法参数设置如表2所列。

表2 遗传算法参数

image.gif

        遗传算法优化程序代码:

clc
clear all
close all
%% 画出函数图
figure(1);
hold on;
lb=1;ub=2; %函数自变量范围【1,2】
ezplot('sin(10*pi*X)/X',[lb,ub]);   %画出函数曲线
xlabel('自变量/X')
ylabel('函数值/Y')
%% 定义遗传算法参数
NIND=40;        %个体数目
MAXGEN=20;      %最大遗传代数
PRECI=20;       %变量的二进制位数
GGAP=0.95;      %代沟
px=0.7;         %交叉概率
pm=0.01;        %变异概率
trace=zeros(2,MAXGEN);                        %寻优结果的初始值
FieldD=[PRECI;lb;ub;1;0;1;1];                      %区域描述器
Chrom=crtbp(NIND,PRECI);                      %初始种群
%% 优化
gen=0;                                  %代计数器
X=bs2rv(Chrom,FieldD);                 %计算初始种群的十进制转换
ObjV=sin(10*pi*X)./X;        %计算目标函数值
while gen<MAXGEN
   FitnV=ranking(ObjV);                               %分配适应度值
   SelCh=select('sus',Chrom,FitnV,GGAP);              %选择
   SelCh=recombin('xovsp',SelCh,px);                  %重组
   SelCh=mut(SelCh,pm);                               %变异
   X=bs2rv(SelCh,FieldD);               %子代个体的十进制转换
   ObjVSel=sin(10*pi*X)./X;             %计算子代的目标函数值
   [Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群
   X=bs2rv(Chrom,FieldD);
   gen=gen+1;                                             %代计数器增加
   %获取每代的最优解及其序号,Y为最优解,I为个体的序号
   [Y,I]=min(ObjV);
   trace(1,gen)=X(I);                            %记下每代的最优值
   trace(2,gen)=Y;                               %记下每代的最优值
end
plot(trace(1,:),trace(2,:),'bo');                            %画出每代的最优点
grid on;
plot(X,ObjV,'b*');   %画出最后一代的种群
hold off
%% 画进化图
figure(2);
plot(1:MAXGEN,trace(2,:));
grid on
xlabel('遗传代数')
ylabel('解的变化')
title('进化过程')
bestY=trace(2,end);
bestX=trace(1,end);
fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])

image.gif

运行结果:

image.gif

image.gif

       2.多元函数优化

       利用遗传算法计算以下函数的最大值:

image.gif

       选择二进制编码,遗传算法参数设置如表3所列。

表3 遗传算法参数

image.gif

       遗传算法优化程序代码:

clc
clear all
close all
%% 画出函数图
figure(1);
lbx=-2;ubx=2; %函数自变量x范围【-2,2】
lby=-2;uby=2; %函数自变量y范围【-2,2】
ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50);   %画出函数曲线
hold on;
%% 定义遗传算法参数
NIND=40;        %个体数目
MAXGEN=50;      %最大遗传代数
PRECI=20;       %变量的二进制位数
GGAP=0.95;      %代沟
px=0.7;         %交叉概率
pm=0.01;        %变异概率
trace=zeros(3,MAXGEN);                        %寻优结果的初始值
FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1];                      %区域描述器
Chrom=crtbp(NIND,PRECI*2);                      %初始种群
%% 优化
gen=0;                                  %代计数器
XY=bs2rv(Chrom,FieldD);                 %计算初始种群的十进制转换
X=XY(:,1);Y=XY(:,2);
ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y);        %计算目标函数值
while gen<MAXGEN
   FitnV=ranking(-ObjV);                              %分配适应度值
   SelCh=select('sus',Chrom,FitnV,GGAP);              %选择
   SelCh=recombin('xovsp',SelCh,px);                  %重组
   SelCh=mut(SelCh,pm);                               %变异
   XY=bs2rv(SelCh,FieldD);               %子代个体的十进制转换
   X=XY(:,1);Y=XY(:,2);
   ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y);             %计算子代的目标函数值
   [Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群
   XY=bs2rv(Chrom,FieldD);
   gen=gen+1;                                             %代计数器增加
   %获取每代的最优解及其序号,Y为最优解,I为个体的序号
   [Y,I]=max(ObjV);
   trace(1:2,gen)=XY(I,:);                       %记下每代的最优值
   trace(3,gen)=Y;                               %记下每代的最优值
end
plot3(trace(1,:),trace(2,:),trace(3,:),'bo');                            %画出每代的最优点
grid on;
plot3(XY(:,1),XY(:,2),ObjV,'bo');  %画出最后一代的种群
hold off
%% 画进化图
figure(2);
plot(1:MAXGEN,trace(3,:));
grid on
xlabel('遗传代数')
ylabel('解的变化')
title('进化过程')
bestZ=trace(3,end);
bestX=trace(1,end);
bestY=trace(2,end);
fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ),'\n'])

image.gif

运行结果:

image.gif

image.gif

4.总结

       遗传算法工具箱提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖问题的具体领域,对问题的种类具有很强的鲁棒性,所以它广泛应用于各个科学领域。遗传算法在函数优化、组合优化、生产调度、自动控制﹑机器人学﹑图像处理、人工生命、遗传编码和机器学习等方面得到了广泛运用。

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
146 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
20小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
20小时前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
24 13
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章