文本情感识别系统python+Django网页界面+SVM算法模型+数据集

简介: 文本情感分析系统,使用Python作为开发语言,基于文本数据集,使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

一、介绍

文本情感分析系统,使用Python作为开发语言,基于文本数据集,使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

二、效果展示

img_07_06_11_01_18

img_07_06_11_01_29

img_07_06_11_01_56

三、演示视频

视频+代码:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、Word2vec介绍

当今社会,文本处理在自然语言处理领域中占据着重要地位。Word2Vec是一种常用的文本处理方法,它能够将文本数据转化为向量表示,从而实现文本的语义分析和比较。本文将介绍如何使用Python中的gensim库来实现Word2Vec算法,并附有相应的代码示例。
首先,我们需要确保已经安装了所需的Python库。Word2Vec库通常是通过gensim库来实现的,因此我们需要使用以下命令来安装它们:


pip install gensim
pip install numpy
pip install nltk
AI 代码解读

接下来,我们需要导入所需的库和模块:


import nltk
from gensim.models import Word2Vec
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
AI 代码解读

我们将使用一个示例文本进行演示,可以是任何英文文本。在这里,我们使用《白鲸记》作为示例。首先,我们需要加载文本数据:


# 加载文本数据
nltk.download('gutenberg')
from nltk.corpus import gutenberg
raw_data = gutenberg.raw('melville-moby_dick.txt')
AI 代码解读

接下来,我们需要将文本数据进行预处理。预处理的主要目的是去除文本中的噪声和冗余信息,使得Word2Vec能够更好地进行向量化处理。在这里,我们将使用NLTK库来完成预处理的任务。NLTK库是Python中常用的自然语言处理库,其中包含了许多有用的函数和工具。
我们首先将文本进行分句和分词处理。分句将文本拆分成句子,而分词则将句子拆分成单词。我们可以使用NLTK库中的sent_tokenize和word_tokenize函数来完成这些操作。示例代码如下:


# 分句
sentences = sent_tokenize(raw_data)

# 分词
tokenized_sentences = [word_tokenize(sentence.lower()) for sentence in sentences]
AI 代码解读

在分词之后,我们还可以进行一些其他的预处理步骤,比如去除停用词、标点符号和数字。停用词是那些在文本中频繁出现但通常没有实际意义的词语,比如"the"、"and"等。我们可以使用NLTK库中提供的停用词列表进行去除。示例代码如下:


# 去除停用词、标点符号和数字
stop_words = set(stopwords.words('english'))

filtered_sentences = []
for sentence in tokenized_sentences:
    filtered_sentence = [word for word in sentence if word.isalpha() and word not in stop_words]
    filtered_sentences.append(filtered_sentence)
AI 代码解读

在预处理完成之后,我们可以使用Word2Vec库来训练我们的词向量模型了。Word2Vec库提供了两种训练模式:连续词训练(CBOW)和跳字模型(Skip-gram)。在这里,我们将使用Skip-gram模型进行训练。示例代码如下:


# 训练Word2Vec模型
model = Word2Vec(filtered_sentences, size=100, window=5, min_count=1, sg=1)

# 查找与给定词最相似的词
similar_words = model.wv.most_similar('whale')
print(similar_words)
AI 代码解读

在上面的代码中,我们首先创建了一个Word2Vec模型对象,传入经过预处理的句子列表filtered_sentences作为训练数据。参数size表示生成的词向量的维度,window表示窗口大小,min_count表示最小词频阈值,sg表示训练模式选择了Skip-gram模型。
接着,我们可以使用训练好的Word2Vec模型来查找与给定词最相似的词。在示例代码中,我们查找与词'whale'最相似的词,并打印出结果。
除了查找相似词之外,Word2Vec还可以用于计算词语之间的相似度。我们可以使用similarity方法来计算两个词之间的余弦相似度。示例代码如下:


# 计算两个词之间的相似度
similarity = model.wv.similarity('whale', 'ship')
print(similarity)
AI 代码解读

上述代码将计算词'whale'和词'ship'之间的余弦相似度,并将结果打印出来。
此外,我们还可以使用Word2Vec模型进行词语间的线性运算。例如,我们可以找到一个词语的向量表示并通过加减运算来找到与之相关的词语。示例代码如下:


# 找到与 'king' - 'man' + 'woman' 最相似的词
result = model.wv.most_similar(positive=['king', 'woman'], negative=['man'])
print(result)
AI 代码解读

上述代码通过将'king'和'woman'加入positive参数,并将'man'加入negative参数来找到与'king' - 'man' + 'woman'最相似的词,并将结果打印出来。
通过以上代码示例,我们介绍了如何使用Python中的gensim库实现Word2Vec算法进行文本处理。我们可以通过预处理文本数据,训练Word2Vec模型,并使用模型进行相似词查询、词语相似度计算和线性运算等操作。Word2Vec算法的应用广泛,可以用于词义相似度计算、文本分类、信息检索等任务中,为我们提供了丰富的语义分析能力。希望本文对你理解和应用Word2Vec有所帮助。

目录
打赏
0
0
0
0
145
分享
相关文章
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
222 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
124 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
基于Python后端构建多种不同的系统终端界面研究
【10月更文挑战第10天】本研究探讨了利用 Python 后端技术构建多样化系统终端界面的方法,涵盖命令行界面(CLI)、图形用户界面(GUI)及 Web 界面。通过分析各种界面的特点、适用场景及关键技术,展示了如何使用 Python 标准库和第三方库(如 `argparse`、`click`、`Tkinter` 和 `PyQt`)实现高效、灵活的界面设计。旨在提升用户体验并满足不同应用场景的需求。
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
83 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
Django学习(五)优雅地分页展示网页
       在我们平时浏览网页时,经常会遇到网页里条目很多的情形,这时就会用到分页展示的功能。那么,在Django中,是如何实现网页分类的功能的呢?答案是Paginator类。
1185 0
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
239 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
306 4
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
269 45
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
184 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
112 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等