文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计

简介: 使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

一、介绍

使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。


本项目通过开发一个基于Python语言的文本情感分析系统,能够自动识别文本中的情感倾向,并区分积极情感和消极情感。文本情感分析是自然语言处理中的一个重要应用领域,广泛应用于舆情监控、用户反馈分析和市场调研等场景。随着互联网的普及,海量的用户生成内容使得自动化的情感分析工具变得愈发重要和紧迫。

本项目的核心技术基于Word2Vec词向量模型对文本进行特征提取。Word2Vec通过将词汇映射到向量空间中,使得语义相似的词在空间中更加接近,从而更好地捕捉文本中的情感信息。文本特征提取完成后,我们使用支持向量机(SVM)算法对提取的特征进行训练,并构建了情感分类模型。SVM作为一种经典的监督学习算法,具备良好的分类性能,尤其在处理高维数据时表现优异。

为了便于用户操作和管理,本项目还基于Django框架开发了一个可视化的网页平台。该平台不仅能够提供用户友好的界面,使用户能够方便地上传文本并查看情感分析结果,还具备数据存储和管理功能,支持对分析结果的历史记录进行保存和检索。通过这一平台,用户可以直观地了解文本情感分析的过程和结果,提升了用户体验与系统的实用性。

二、效果图片展示

img_07_06_11_01_03

img_07_06_11_01_18

img_07_06_11_01_29

img_07_06_11_01_56

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、SVM算法介绍

支持向量机(Support Vector Machine, SVM)是一种用于分类和回归分析的监督学习算法,广泛应用于文本分类、图像识别等领域。其基本思想是通过在特征空间中寻找一个最佳的超平面,将不同类别的数据进行划分。SVM尤其擅长处理高维数据,并在小样本、非线性问题中表现出色。

SVM 的核心是最大化分类间隔(Margin),即找到使得两类数据点之间距离最大的决策边界。通过这种方式,SVM 能有效地提高模型的泛化能力,减少过拟合的风险。对于线性不可分的数据,SVM 通过引入核函数(Kernel)将数据映射到更高维的空间,使其在新空间中线性可分。常用的核函数包括线性核、径向基核(RBF)和多项式核等。

在情感分析任务中,SVM可以通过处理文本的高维特征向量来实现分类。借助于Word2Vec等特征提取方法,SVM能利用文本的语义信息,将文本映射到向量空间后进行情感分类。其优异的分类性能和对高维数据的处理能力使得SVM在文本情感分类领域得到了广泛应用。

以下是一个使用支持向量机(SVM)进行文本情感分类的简单示例代码,假设我们已经对文本数据进行了特征提取(例如通过Word2Vec或TF-IDF),并将数据转化为数值特征矩阵进行训练和测试:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 假设我们有一个文本数据集和对应的标签(积极/消极)
data = pd.read_csv('text_sentiment_data.csv')  # 数据集,包含两列:'text' 和 'label'

# 使用TF-IDF对文本进行特征提取
vectorizer = TfidfVectorizer(max_features=5000)  # 选择5000个最重要的特征
X = vectorizer.fit_transform(data['text'])  # 将文本转化为特征矩阵
y = data['label']  # 标签(积极或消极)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM分类器
svm_model = SVC(kernel='linear')  # 使用线性核

# 训练模型
svm_model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm_model.predict(X_test)

# 输出分类结果
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:")
print(classification_report(y_test, y_pred))

代码说明:

  1. 数据加载:假设我们有一个包含文本和情感标签的数据集。
  2. 特征提取:使用TfidfVectorizer对文本进行特征提取,将文本转化为数值特征矩阵。也可以使用其他方法如Word2Vec。
  3. 模型训练:使用SVC来构建支持向量机模型,并选择线性核函数。
  4. 预测与评估:在测试集上进行预测,并输出模型的准确率和分类报告。

这是一个简化的示例,在实际应用中可以根据需求调整特征提取方式和模型参数。

目录
相关文章
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
9天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
26 2
|
13天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
30 4
|
11天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
22 1
|
11天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
31 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
15天前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
37 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
1月前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
165 1
下一篇
无影云桌面