中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发

简介: 中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下:- 系统分为普通用户和管理员两个角色- 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐- 管理员可以在后台对用户和物品信息进行管理编辑

一、介绍

中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下:

  • 系统分为普通用户和管理员两个角色
  • 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐
  • 管理员可以在后台对用户和物品信息进行管理编辑

二、系统效果图片展示

img_09_06_14_39_04

img_09_06_14_39_20

img_09_06_14_39_37

img_09_06_14_39_45

img_09_08_21_40_45

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/uzpk90wxsu6g01g9

四、Django介绍

Django是一个高级Python Web框架,促进快速开发和简洁、实用的设计。它的特点使得开发者能够更高效地构建和维护复杂的Web应用。以下是Django的几个主要特点:

  1. 快速开发:Django遵循“不要重复自己”(DRY, Don't Repeat Yourself)的原则,提供了大量开箱即用的组件,如用户认证、URL路由、表单处理等,减少了开发时间。
  2. 高安全性:Django内置了防范多种常见安全威胁的措施,如SQL注入、跨站脚本攻击(XSS)、跨站请求伪造(CSRF)等。它还提供了对安全性要求较高的功能,如用户认证和权限管理。
  3. 可扩展性:Django采用模块化设计,允许开发者根据项目需求进行定制和扩展。它有着灵活的中间件系统,可以在处理请求和响应时插入自定义逻辑。
  4. ORM(对象关系映射):Django内置了强大的ORM,开发者可以用Python类来定义数据库模型,Django会自动将这些类映射为数据库表,并提供简单的方法来操作数据,而不需要编写SQL语句。
  5. 庞大的社区和丰富的文档:Django有着庞大的社区支持,提供了丰富的教程、文档和插件,帮助开发者更快地上手和解决问题。

以下是一个简单的Django应用的示例代码,展示了如何创建一个简单的模型和视图,并将其绑定到URL:

# models.py
from django.db import models

class Post(models.Model):
    title = models.CharField(max_length=200)
    content = models.TextField()

    def __str__(self):
        return self.title

# views.py
from django.shortcuts import render
from .models import Post

def post_list(request):
    posts = Post.objects.all()
    return render(request, 'post_list.html', {
   
   'posts': posts})

# urls.py
from django.urls import path
from .views import post_list

urlpatterns = [
    path('', post_list, name='post_list'),
]

# post_list.html
<!DOCTYPE html>
<html>
<head>
    <title>Post List</title>
</head>
<body>
    <h1>Posts</h1>
    <ul>
        {
   
   % for post in posts %}
            <li>{
   
   {
   
    post.title }}</li>
        {
   
   % endfor %}
    </ul>
</body>
</html>

在这个示例中,我们定义了一个简单的Post模型,用于存储文章的标题和内容。然后在视图中获取所有文章,并通过模板将文章列表渲染为HTML页面。最后,通过URL配置将视图绑定到根路径,使得用户可以访问文章列表。这个例子展示了Django的模型-视图-模板(MVT)架构的基本工作方式。

目录
相关文章
|
27天前
|
机器学习/深度学习 传感器 存储
使用 Python 实现智能地震预警系统
使用 Python 实现智能地震预警系统
114 61
|
11天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
3天前
|
Python
Django 框架的路由系统
Django 框架的路由系统
18 6
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
10天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
15天前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
66 6
|
19天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现智能生态系统监测与保护的深度学习模型
使用Python实现智能生态系统监测与保护的深度学习模型
56 4
|
27天前
|
云计算 Python
用python给你写个简单的计算器功能网页啊
这张图片展示了阿里巴巴集团的组织架构图,涵盖了核心电商、云计算、数字媒体与娱乐、创新业务等主要板块,以及各板块下的具体业务单元和部门。
|
22天前
|
数据采集 Java Python
如何用Python同时抓取多个网页:深入ThreadPoolExecutor
在信息化时代,实时数据的获取对体育赛事爱好者、数据分析师和投注行业至关重要。本文介绍了如何使用Python的`ThreadPoolExecutor`结合代理IP和请求头设置,高效稳定地抓取五大足球联赛的实时比赛信息。通过多线程并发处理,解决了抓取效率低、请求限制等问题,提供了详细的代码示例和解析方法。
如何用Python同时抓取多个网页:深入ThreadPoolExecutor