OpenCV-Python,计算机视觉开发利器

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 人工智能,一个已经被谈论了几十年的概念(最早是图灵在1950年提出)。如今这几年,相关技术的发展速度是越来越快。高大上如无人驾驶、智能安防、AI辅助诊断,接地气如刷脸支付、内容推荐、自动翻译等,众多领域借助人工智能的力量而进化。从百度搜索指数的变化,也能从一个侧面反映出关注度在不断上升。

人工智能,一个已经被谈论了几十年的概念(最早是图灵1950年提出)。如今这几年,相关技术的发展速度是越来越快。高大上如无人驾驶、智能安防、AI辅助诊断,接地气如刷脸支付、内容推荐、自动翻译等,众多领域借助人工智能的力量而进化。从百度搜索指数的变化,也能从一个侧面反映出关注度在不断上升。



而这其中,很多应用都涉及到“计算机视觉”这样一个细分领域。简单来说,就是将图像信息转化为计算机可以处理的数字信息,从而让计算机能“看得见”。这个信息不仅仅是二维的图片,也包括三维场景、视频序列等。基本上所有需要用到摄像头、图片、视频的应用场景,都离不开计算机视觉的支持。因此,这也是人工智能领域中比较热门的一个方向。


来自《2017年人工智能行业发展研究报告白皮书》- IT耳朵&IT桔子


而说到计算机视觉,就不能不提到 OpenCV,它是一个历史悠久、功能丰富、社区活跃的开源视觉开发库。一方面,它提供了计算机视觉以及图像处理方面最常用最基础的功能支持,是开发的必备工具;另一方面,它在新版本中紧跟潮流,加入对新的算法、硬件的支持(v3.3 正式引入 DNN)。


OpenCV 基于 C++ 编写,但提供了 Python、Ruby、MATLAB 等多种语言接口。这对于习惯使用 Python 开发的人工智能从业者来说非常方便。之前的不少习题和开发案例中,我们都有用到过。今天我们再用几个常见的例子,演示下 OpenCV-Python 的强大功能。


安装:


OpenCV 的安装,不同平台不同版本会有一些差异。安装前需要装好 numpy,强烈建议先安装好 Anaconda,然后直接通过命令安装:


pip install opencv-python


如果你运气好,代码里运行 import cv2 没报错就是成功了。


但大多数时候可能不行。你可以考虑去这里下载安装文件:


https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv


然后通过命令从本地安装:


pip install opencv_python‑3.4.3‑cp37‑cp37m‑win_amd64.whl


这里下载的安装文件版本号务必要和你本机的 Python 版本相对应。


如果安装时还有其他问题,可在网上直接搜索报错,通常都会有解决方案,这里不一一赘述。


基本的图像读写:


我们用图像处理的经典范例 Lenna 来做测试


可自行搜索这幅图像的来

import cv2 as cv
# 读图片
img = cv.imread('img/Lenna.png')
# 图片信息
print('图片尺寸:', img.shape)
print('图片数据:', type(img), img)
# 显示图片
cv.imshow('pic title', img)
cv.waitKey(0)
# 添加文字
cv.putText(img, 'Learn Python with Crossin', (50, 150), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 4)
# 保存图片
cv.imwrite('img/Lenna_new.png', img)


OpenCV-Python 中的图像数据使用了 numpy 库的 ndarray 类型进行管理,便于进行各种数值计算和转换。


常见的图像处理:


import numpy as np
# 灰度图
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imwrite('img/Lenna_gray.png', img_gray)
# 二值化
_, img_bin = cv.threshold(img_gray, 127, 255, cv.THRESH_BINARY)
cv.imwrite('img/Lenna_bin.png', img_bin)
# 平滑
img_blur = cv.blur(img, (5, 5))
cv.imwrite('img/Lenna_blur.png', img_blur)
# 边缘提取
_, contours, _ = cv.findContours(img_bin, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
img_cont = np.zeros(img_bin.shape, np.uint8)    
cv.drawContours(img_cont, contours, -1, 255, 3) 
cv.imwrite('img/Lenna_cont.png', img_cont)


这几种都属于数字图像处理的常用方法。OpenCV-Python 基本都封装好的接口,只需一两行代码就能完成,在实际项目开发中非常方便。


我们编程教室之前的“每周一坑”栏目里,和图像相关的题目基本都可以用 OpenCV-Python 来解决。


对这方面知识感兴趣的,可以找本数字图像处理的相关教材系统地看一遍,了解数字图像处理的基础。


除了基础功能,OpenCV 在代码附带的 Samples 里还提供了一些经典开发案例:


人脸检测


https://github.com/opencv/opencv/blob/master/samples/python/facedetect.py


使用方法


python facedetect.py


核心代码


cascade = cv.CascadeClassifier("haarcascade_frontalface_alt.xml")
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)


640.gif


此功能基于 Haar 分类器实现,项目中附带有训练好的分类器文件。此外,你还可以使用 OpenCV 训练针对其他目标特征的分类器。


我们之前的开发案例 Python送你一顶圣诞帽 就使用了 OpenCV-Python 的人脸识别代码。


姿态识别


https://github.com/opencv/opencv/blob/master/samples/dnn/openpose.py


使用方法


python openpose.py --model pose.caffemodel --proto pose.prototxt --dataset MPI


核心代码


net = cv.dnn.readNetFromCaffe(args.proto, args.model)
inp = cv.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False)
net.setInput(inp)
out = net.forward()


详情参见文章: 用 Python 实现抖音尬舞机


风格迁移


https://github.com/opencv/opencv/blob/master/samples/dnn/fast_neural_style.py


使用方法


python fast_neural_style.py --model starry_night.t7


核心代码


net = cv.dnn.readNetFromTorch(args.model)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV);
inp = cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (103.939, 116.779, 123.68), swapRB=False, crop=False)
net.setInput(inp)
out = net.forward()


详情参见文章: Python+OpenCV 十几行代码模仿世界名画


以上便是 OpenCV-Python 的一些简单应用。OpenCV 官方 Samples 代码里还有很多有趣的例子(地址:https://github.com/opencv/opencv )更强大的功能也有待你在开发中逐步体会。


希望这篇管中窥豹的文章可以让各位对  OpenCV 和计算机视觉有一个初步的了解和直观的认识,进而共同参与到人工智能这场技术浪潮中来。



其他内容回复关键字:

python :零基础入门课程目录

新手 :初学者指南及常见问题

资源 :超过500M学习资料网盘地址

项目 :十多个进阶项目代码实例

如需了解视频课程及答疑群等更多服务,请号内回复 码上行动

代码相关问题可以在论坛上发帖提问 bbs.crossincode.com

推荐阅读:

爬抖音 | AI名画| 押韵工具 | 虎扑 | 如何debug | 苹果 | 查天气 | 我用Python | 知乎 | 排序 | 电影票 | 技术宅 | 单词表 | 新手建议 

相关文章
|
3天前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
35 15
|
30天前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
【10月更文挑战第12天】本文探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
33 5
|
1月前
|
机器学习/深度学习 监控 算法
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
44 3
|
1月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
【10月更文挑战第6天】本文探讨了性能优化和代码审查在Python开发中的重要性,提供了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
53 5
|
15天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
101 44
|
10天前
|
JSON 安全 API
如何使用Python开发API接口?
在现代软件开发中,API(应用程序编程接口)用于不同软件组件之间的通信和数据交换,实现系统互操作性。Python因其简单易用和强大功能,成为开发API的热门选择。本文详细介绍了Python开发API的基础知识、优势、实现方式(如Flask和Django框架)、实战示例及注意事项,帮助读者掌握高效、安全的API开发技巧。
37 3
如何使用Python开发API接口?
|
3天前
|
JSON API 数据格式
如何使用Python开发1688商品详情API接口?
本文介绍了如何使用Python开发1688商品详情API接口,获取商品的标题、价格、销量和评价等详细信息。主要内容包括注册1688开放平台账号、安装必要Python模块、了解API接口、生成签名、编写Python代码、解析返回数据以及错误处理和日志记录。通过这些步骤,开发者可以轻松地集成1688商品数据到自己的应用中。
16 1
|
9天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
16天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
59 7
|
18天前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
38 8