基于人类反馈的强化学习:对齐AI与人类价值观的技术革命
基于人类反馈的强化学习(RLHF)是一种通过人类偏好来训练AI的技术,使其行为更符合人类价值观。它分三阶段:先用示范数据微调模型,再训练奖励模型预测人类偏好,最后用强化学习优化模型。相比传统方法,RLHF在安全性、创造力、数据效率等方面优势显著,能有效提升AI的对齐性与实用性,是实现有益人工智能的关键路径。
CVPR 2024 目标检测!开放词汇
YOLO-World是CVPR 2024提出的一种实时开放词汇目标检测模型,首次将YOLO的高速特性与开放词汇识别能力结合。它无需微调即可通过文本提示检测任意物体,支持零样本推理,兼具高精度与灵活性,适用于机器人、自动驾驶等实时感知场景,标志着目标检测迈向通用化新阶段。