【图像去雾】基于双边滤波算法实现图像去雾附Matlab源码

简介: 【图像去雾】基于双边滤波算法实现图像去雾附Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于双边滤波算法实现图像去雾是一种常用的方法,用于恢复由大气雾霾引起的图像模糊和低对比度问题。以下是一个基本的步骤框架:

  1. 雾图像预处理:首先对输入的雾图像进行预处理,例如校正伽马校正、直方图均衡化等操作,以增强图像的动态范围。
  2. 估计大气光:通过在雾图像中寻找最亮的像素点来估计全局大气光值。这些最亮像素通位于天空区域或具有很高亮度值的区域。
  3. 估计透射率:利用双边滤波算法估计图像中每个像素点的透射率。双边滤波是一种考虑空间距离和灰度相似性的滤波器,能够有效降低噪声同时保留边缘信息。
  4. 运用射率进行去雾:使用估计得到的透射率和大气光值,对雾图像进行去雾处理。其中,去雾公式为:I = (J - A) / t +I为去雾图像,J为输入雾图像,A为估计得的大气光,t为透射率。
  5. 去雾结果后处理:对去雾结果进行后处理,例如对比度增强、锐化或色彩校正等操作,以进一步提升图像的质量和视觉效果。

需要注意的是,双边滤波算法在去雾过程中能够保留边缘细节,但在复杂场景、低光照条件或存在运动模糊时可能产生其它问题。因此,在实际应用中,可以根据具体情况和需求,采用其他图像处理技术和算法来改进和优化图像去雾的效果。

⛄ 部分代码

clcclear allclose all%imageRGB = imread('picture.bmp');%imageRGB = imread('shishi.jpg');imageRGB = imread('traffic.jpg');imageRGB = double(imageRGB);imageRGB=imageRGB./255;figure;%subplot(2,1,1);imshow(imageRGB), title('原始图像');% imwrite(imageRGB(2:516,2:689,:),'D:\所有去雾程序\新建文件夹\双边滤波去雾\双边椒盐7(1)去雾截.bmp');% subplot(2,1,2);imhist(rgb2gray(imageRGB));% imageRGB=imnoise(imageRGB,'gaussian',0.02);% figure;% imshow(imageRGB);title('加噪图');sz=size(imageRGB);w=sz(2);h=sz(1);dark=darkChannel(imageRGB);figure,imshow(dark);title('暗通道图像');% imwrite(dark,'traffic_1.jpg')[m,n,~] = size(imageRGB);%估计大气光值A,从暗通道中按亮度大小提取最亮的前0.1%像素。然后在原始有雾图像I中寻找对应位置上的具有最亮亮度的点的值,并以此作为A的值imsize = m * n;numpx = floor(imsize/1000);JDarkVec = reshape(dark,imsize,1);ImVec = reshape(imageRGB,imsize,3);    im(:,:,ind) = imageRGB(:,:,ind)./atmospheric(ind);enddark_2=darkChannel(im);%P15页对大气光归一化以后求取暗通道t = 1-omega*dark_2;%对透射率粗估计figure,imshow(t), title('原始透射图');% imwrite(t,'traffic_2.jpg')filter=0.9*bfltGray(t,1,3,0.1);t_d = filter;figure,imshow(t_d), title('双边滤波后透射图');A = min([minAtomsLight, max(max(dc2))]); %确定大气光强J = zeros(h,w,3);img_d = double(img);r = krnlsz*3;eps = 10^-6;filtered = guidedfilter(double(rgb2gray(img))/255, t_d, r, eps);%指导滤波t进行增强t_d = filtered;% figure,imshow(t_d,[]),title('滤波后 t');J(:,:,1) = (img_d(:,:,1) - (1-t_d)*A)./t_d;J(:,:,2) = (img_d(:,:,2) - (1-t_d)*A)./t_d;J(:,:,3) = (img_d(:,:,3) - (1-t_d)*A)./t_d;figure,imshow(uint8(J)), title('去雾图像');%}

⛄ 运行结果

⛄ 参考文献

[1] 胡薇,高银.基于边界限制的自适应双边滤波单幅图像去雾算法[J].  2020.DOI:10.3788/LOP57.241505.

[2] 王园园,黄丽琼.基于双边滤波器的雾霾天气交通标志图像去雾算法[J].舰船电子工程, 2019, 39(12):3.DOI:CNKI:SUN:JCGC.0.2019-12-031.

[3] 温立民,巨永锋,王会峰,等.基于双边滤波暗原色透射率细化的图像去雾算法[J].测控技术, 2020, 39(4):4.DOI:CNKI:SUN:IKJS.0.2020-04-013.

[4] 王一帆,尹传历,黄义明,等.基于双边滤波的图像去雾[J].中国图象图形学报, 2014, 19(3):7.DOI:10.11834/jig.20140307.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长





相关文章
|
10天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
5天前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
在本教程中,您将学习在阿里云交互式建模平台PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理,实现文本驱动的图像编辑功能单卡即可完成AIGC图片风格变化、背景变化和主体变化等功能。让我们一同开启这场旅程,为您的图像编辑添上无限可能性的翅膀吧。
|
19小时前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
13 4
|
19小时前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的16QAM解调算法matlab性能仿真
这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。
|
2天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
3天前
|
存储 编解码 算法
图像的压缩算法--尺寸压缩、格式压缩和品质压缩
图像的压缩算法--尺寸压缩、格式压缩和品质压缩
11 0
|
6天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
27 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
8天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
8天前
|
NoSQL 算法 Java
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
【redis源码学习】持久化机制,java程序员面试算法宝典pdf