【图像去雾】基于双边滤波算法实现图像去雾附Matlab源码

简介: 【图像去雾】基于双边滤波算法实现图像去雾附Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于双边滤波算法实现图像去雾是一种常用的方法,用于恢复由大气雾霾引起的图像模糊和低对比度问题。以下是一个基本的步骤框架:

  1. 雾图像预处理:首先对输入的雾图像进行预处理,例如校正伽马校正、直方图均衡化等操作,以增强图像的动态范围。
  2. 估计大气光:通过在雾图像中寻找最亮的像素点来估计全局大气光值。这些最亮像素通位于天空区域或具有很高亮度值的区域。
  3. 估计透射率:利用双边滤波算法估计图像中每个像素点的透射率。双边滤波是一种考虑空间距离和灰度相似性的滤波器,能够有效降低噪声同时保留边缘信息。
  4. 运用射率进行去雾:使用估计得到的透射率和大气光值,对雾图像进行去雾处理。其中,去雾公式为:I = (J - A) / t +I为去雾图像,J为输入雾图像,A为估计得的大气光,t为透射率。
  5. 去雾结果后处理:对去雾结果进行后处理,例如对比度增强、锐化或色彩校正等操作,以进一步提升图像的质量和视觉效果。

需要注意的是,双边滤波算法在去雾过程中能够保留边缘细节,但在复杂场景、低光照条件或存在运动模糊时可能产生其它问题。因此,在实际应用中,可以根据具体情况和需求,采用其他图像处理技术和算法来改进和优化图像去雾的效果。

⛄ 部分代码

clcclear allclose all%imageRGB = imread('picture.bmp');%imageRGB = imread('shishi.jpg');imageRGB = imread('traffic.jpg');imageRGB = double(imageRGB);imageRGB=imageRGB./255;figure;%subplot(2,1,1);imshow(imageRGB), title('原始图像');% imwrite(imageRGB(2:516,2:689,:),'D:\所有去雾程序\新建文件夹\双边滤波去雾\双边椒盐7(1)去雾截.bmp');% subplot(2,1,2);imhist(rgb2gray(imageRGB));% imageRGB=imnoise(imageRGB,'gaussian',0.02);% figure;% imshow(imageRGB);title('加噪图');sz=size(imageRGB);w=sz(2);h=sz(1);dark=darkChannel(imageRGB);figure,imshow(dark);title('暗通道图像');% imwrite(dark,'traffic_1.jpg')[m,n,~] = size(imageRGB);%估计大气光值A,从暗通道中按亮度大小提取最亮的前0.1%像素。然后在原始有雾图像I中寻找对应位置上的具有最亮亮度的点的值,并以此作为A的值imsize = m * n;numpx = floor(imsize/1000);JDarkVec = reshape(dark,imsize,1);ImVec = reshape(imageRGB,imsize,3);    im(:,:,ind) = imageRGB(:,:,ind)./atmospheric(ind);enddark_2=darkChannel(im);%P15页对大气光归一化以后求取暗通道t = 1-omega*dark_2;%对透射率粗估计figure,imshow(t), title('原始透射图');% imwrite(t,'traffic_2.jpg')filter=0.9*bfltGray(t,1,3,0.1);t_d = filter;figure,imshow(t_d), title('双边滤波后透射图');A = min([minAtomsLight, max(max(dc2))]); %确定大气光强J = zeros(h,w,3);img_d = double(img);r = krnlsz*3;eps = 10^-6;filtered = guidedfilter(double(rgb2gray(img))/255, t_d, r, eps);%指导滤波t进行增强t_d = filtered;% figure,imshow(t_d,[]),title('滤波后 t');J(:,:,1) = (img_d(:,:,1) - (1-t_d)*A)./t_d;J(:,:,2) = (img_d(:,:,2) - (1-t_d)*A)./t_d;J(:,:,3) = (img_d(:,:,3) - (1-t_d)*A)./t_d;figure,imshow(uint8(J)), title('去雾图像');%}

⛄ 运行结果

⛄ 参考文献

[1] 胡薇,高银.基于边界限制的自适应双边滤波单幅图像去雾算法[J].  2020.DOI:10.3788/LOP57.241505.

[2] 王园园,黄丽琼.基于双边滤波器的雾霾天气交通标志图像去雾算法[J].舰船电子工程, 2019, 39(12):3.DOI:CNKI:SUN:JCGC.0.2019-12-031.

[3] 温立民,巨永锋,王会峰,等.基于双边滤波暗原色透射率细化的图像去雾算法[J].测控技术, 2020, 39(4):4.DOI:CNKI:SUN:IKJS.0.2020-04-013.

[4] 王一帆,尹传历,黄义明,等.基于双边滤波的图像去雾[J].中国图象图形学报, 2014, 19(3):7.DOI:10.11834/jig.20140307.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长





相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
11天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
12天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
11天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。