采用多层人工神经网络的能源消耗的时间序列预测(Matlab代码实现)

简介: 采用多层人工神经网络的能源消耗的时间序列预测(Matlab代码实现)

💥1 概述

该项目为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。

📚2 运行结果

 

🎉3 参考文献

[1]程静,郑定成,吴继权.基于时间序列ARMA模型的广东省能源需求预测[J].能源工程,2010(01):1-5.DOI:10.16189/j.cnki.nygc.2010.01.012.

👨‍💻4 Matlab代码

seed = 52
    rng(seed);                                                                  % Seeds the random number generator using the nonnegative integer seed     
    % Load the data
    load lasertrain.dat 
    load laserpred.dat
    clear net
    close all
    p = 18;                                                                     % Lag    
    n = 4;                                                                      % Difference between the inputs and the number of neurons    
    [TrainData, TrainTarget] = getTimeSeriesTrainData(lasertrain, p);           % This creates TrainData and TrainTarget, such as divided in time  intervales of 5. TrainData(:,1) -> TrainTarget(1). R5 --> R1
    % Create the ANN
    numN = p - n;                                                               % Number of neurons in the hidden layer
    numE = 200;                                                                 % Number of epochs
    trainAlg = 'trainlm';                                                       % Training Algorithm 
    transFun = 'tansig';                                                        % Transfer Function   
    net = feedforwardnet(numN, trainAlg);                                       % Create general feedforward netowrk
    net.trainParam.epochs = numE;                                               % Set the number of epochs for the training 
    net.layers{1}.transferFcn = transFun;                                       % Set the Transfer Function
%     net.divideParam.trainRatio = 0.8;
%     net.divideParam.valRatio = 0.2;
%     net.divideParam.testRatio = 0;
    P = TrainData;       
    T = TrainTarget;     
    net = train(net,P,T);
    TotMat = [lasertrain ; zeros(size(laserpred))];
    for j = 1:length(laserpred) 
        r = length(lasertrain) - p + j;
        P = TotMat(r:r+p-1);
        a = sim(net,P);
        TotMat(length(lasertrain) + j) = a;
%         TotMat(length(lasertrain) + j) = (abs(round(a))+round(a))/2;
    end
    err = immse(TotMat(length(lasertrain)+1:end),laserpred);
    x = linspace(1,length(TotMat),length(TotMat));
figure
subplot(3,1,2)
plot(x(1:length(lasertrain)), TotMat(1:length(lasertrain)),'r', x(length(lasertrain)+1:end), TotMat(length(lasertrain)+1:end),'g', x(length(lasertrain)+1:end), laserpred','b');
xlim([1 1100])
title('Real set and forecast set');
legend('Training Data','Forecasted Data', 'Test data');
subplot(3,1,1)
plot(x(1:length(lasertrain)), TotMat(1:length(lasertrain)),'r', x(length(lasertrain):end), TotMat(length(lasertrain):end),'g');
xlim([1 1100])
title('Forecasted set');
legend('Training Data','Forecasted Data');
subplot(3,1,3)
plot(x(length(lasertrain)+1:end), TotMat(length(lasertrain)+1:end),'g', x(length(lasertrain)+1:end), laserpred','b');
xlim([1000 1100])
title('Detailed forcast data vs Test data');
legend('Forecasted Data', 'Test data');
formatSpec = 'The mean squared error is %4.2f \n';
fprintf(formatSpec, err)

主函数部分代码:

%% Exercise 2 - Recurrent Neural Networks
%% Initial stuff
clc
clearvars
close all
%% 1 - Hopfield Network
% Note: for this exercise, it will be interesting to check what happens if
% you add more neurons, i.e. modify T such as N is bigger.
T = [1 1; -1 -1; 1 -1]';                                                    % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 2-neuron network with 3 atactors
net = newhop(T);                                                            % Create a recurrent HOpfield network with stable points being the vectors from T
A1 = [0.3 0.6; -0.1 0.8; -1 0.5]';                                          % Example inputs
A2 = [-1 0.5 ; -0.5 0.1 ; -1 -1 ]';
A3 = [1 0.5  ; -0.3 -0.4 ; 0.8 -0.6]';
A4 = [0 -0.1 ; 0.1 0 ; -0.5 0.1]';
A5 = [0 0 ; 0 0.1  ; -0.1 0 ]';
A0 = [1 1; -1 -1; 1 -1]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    
num_step = 20;                                                              % Number of steps                
Y_1 = net({num_step},{},A1);                                                % Multiple step iteration
Y_2 = net({num_step},{},A2);  
Y_3 = net({num_step},{},A3);  
Y_4 = net({num_step},{},A4);  
Y_5 = net({num_step},{},A5);
%% Now we try with 4 Neurons
T_ = [1 1 1 1; -1 -1 1 -1; 1 -1 1 1]';                                      % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 4-neuron network with 3 atactors
net_ = newhop(T_);                                                          % Create a recurrent HOpfield network with stable points being the vectors from T
A1_ = [0.3 0.6 0.3 0.6; -0.1 0.8 -0.1 0.8; -1 0.5 -1 0.5]';                 % Example inputs
A2_ = [-1 0.2 -1 0.2 ; -0.5 0.1  -0.5 0.1 ; -1 -1 -1 -1 ]';
A3_ = [1 0.5 1 0.5 ; -0.3 -0.4 -0.3 -0.4 ; 0.8 -0.6 0.8 -0.6]';
A4_ = [-0.5 -0.3 -0.5 -0.3 ; 0.1 0.8 0.1 0.8 ; -0.7 0.6 -0.7 0.6]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    
num_step_ = 40;                                                             % Number of steps                
Y_1_ = net_({num_step_},{},A1_);                                            % Multiple step iteration
Y_2_ = net_({num_step_},{},A2_);  
Y_3_ = net_({num_step_},{},A3_);  
Y_4_ = net_({num_step_},{},A4_); 
%% Execute rep2.m || A script which generates n random initial points and visualises results of simulation of a 2d Hopfield network 'net'
% Note: The idea is to understand what is the relation between symmetry and
% attractors. It does not make sense that appears a fourth attractor when
% only 3 are in the Target T
close all 


相关文章
|
11天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
19天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
30天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。