基于麻雀优化的路径规划算法附matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 基于麻雀优化的路径规划算法附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

智能机器人只有具备自主移动能力才能实现应用价值.路径规划用于决策机器人在环境中如何行走的问题,是实现机器人智能化的关键技术.为提高机器人路径规划,对未知环境的实时性,适应性和优化性要求越来越高.自主移动机器人是集环境感知,动态策略与规划,行为控制与执行等多功能于一体的综合系统.近几年,移动机器人技术在工业,农业,医学,航天航空等许多领域发挥了重要作用.其中智能避障更是研究领域的难点和热点,智能避障是能够根据采集障碍物的状体信息,按照一定的方法进行有效的避障,最后到达终点.

1 麻雀搜索算法原理

麻雀搜索算法是一种新型的群智能优化算法, 2020 年由 Xue [15] 提出,主要是受麻雀的觅食和反哺食行为启发,具有寻优能力强、收敛速度快的特点。麻雀搜索算法将整个麻雀种群分为三类,即寻找食物的生产者,抢夺食物的加入者和发现危险的警戒者。生产者和加入者可以相互转化,但各自在种群中的占比不会发生变化。在模拟实验中,需要使用虚拟麻雀进行食物的寻找,与其他寻优算法相同,麻雀搜索算法首先需要对麻雀种群与适应度值进行初始化,麻雀种群可初始化为如下形式,表达式为(3) 中:n为麻雀的数量;d为要优化的变量的维度即独立参数的数目;xnd为第n只麻雀第d维度的值。由此,总体麻雀适应度值表征形式为(4)中:f(x)为个体适应度值。适应度值较好的麻雀(即生产者)在搜索中会优先获得食物并指引群体的觅食方向与范围,与此同时,生产者会具有更大的觅食搜索范围。生产者在觅食过程中,位置不断发生移动,而在遇到捕食者时,移动规则又会发生改变,即(5)中:t为当前迭代次数;j∈{12d}xitj为迭代第t次时,第i个麻雀的第j个维度的值;α∈(01],为随机数;iter_max为迭代次数最多的常数;R2∈[01],为报警值;ST∈[01],为安全阈值;Q为服从正态分布的随机数;L1×d阶矩阵(元素全为1)R2ST时,代表该区域安全,无捕食者出没,生产者会出现大范围觅食行为;R2≥ST时,表示一些麻雀发现了捕食者并发出警告,所有麻雀迅速飞入安全区域。而对加入者而言,在觅食过程中,一旦生产者找到了好的食物源,加入者必会知晓,并飞向它的附近抢食,同时,也有加入者会时刻监视生产者,随时准备争抢食物。由此加入者的位置更新规则为(6)中:xp为生产者占据的最佳位置;xworst为全局最差位置;A1×d阶矩阵,每个元素随机为1或-1A†AT(AAT)1。当i>时,表示适应性较差的第i个加入者抢夺食物失败,为了更好地获得食物避免挨饿只能飞往其他地区进行觅食。总体而言,假设意识到危险的麻雀(即警戒者)10~20%。初始位置则随机产生,规则为(7)中:λ为步长控制函数,是一个均值为0,方差为1的正态分布随机数;fi为当前麻雀适应值;fg为全局最好适应值;fw为全局最差适应值;k为麻雀移动方向;xbest为全局最优位置;ε为最小常数,避免除数为零。当fifg时,警戒者位于种群边缘,意识到危险后向中央安全区靠近;当fifg时,则是处于种群中央的麻雀意识到了危险,为躲避危险,则向其他麻雀身边靠拢。

⛄ 部分代码

%_________________________________________________________________________%

% 原始麻雀优化算法SSA %

%_________________________________________________________________________%

function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)


ST = 0.6; % 预警值

PD = 0.7; % 发现者的比列,剩下的是加入者

SD = 0.2; % 意识到有危险麻雀的比重


PDNumber = round(pop*PD); % 发现者数量

SDNumber = round(pop*SD); % 意识到有危险麻雀数量



% 种群初始化

X0=initialization(pop,dim,ub,lb);

X = X0;


% 计算初始适应度值

fitness = zeros(1,pop);

for i = 1:pop

  fitness(i) =  fobj(X(i,:));

end


[fitness, index]= sort(fitness); % 排序

BestF = fitness(1);

WorstF = fitness(end);

GBestF = fitness(1); % 全局最优适应度值


for i = 1:pop

   X(i,:) = X0(index(i),:);

end


curve=zeros(1,Max_iter);

GBestX = X(1,:); % 全局最优位置

X_new = X;


for i = 1: Max_iter

   

   BestF = fitness(1);

   WorstF = fitness(end);

 

   R2 = rand(1);

  for j = 1:PDNumber

     if(R2<ST)

         X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));

     else

         X_new(j,:) = X(j,:) + randn()*ones(1,dim);

     end    

  end

  for j = PDNumber+1:pop

%        if(j>(pop/2))

       if(j>(pop - PDNumber)/2 + PDNumber)

         X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);

      else

         % 产生-1,1的随机数

         A = ones(1,dim);

         for a = 1:dim

           if(rand()>0.5)

               A = -1;

           end

         end

         AA = A'*inv(A*A');    

         X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';

      end

  end

 

  Temp = randperm(pop);

  SDchooseIndex = Temp(1:SDNumber);

  for j = 1:SDNumber

      if(fitness(SDchooseIndex(j))>BestF)

          X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));

      elseif(fitness(SDchooseIndex(j))== BestF)

          K = 2*rand() -1;

          X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));

      end

  end

  % 边界控制

  for j = 1:pop

     

      for a = 1: dim

                 X_new(j,a)=round(X_new(j,a));

          if(X_new(j,a)>ub)

              X_new(j,a) =ub;

          end

          if(X_new(j,a)<lb)

              X_new(j,a) =lb;

          end

         

      end


  end

  % 更新位置

  for j=1:pop

   fitness_new(j) = fobj(X_new(j,:));

  end

  for j = 1:pop

   if(fitness_new(j) < GBestF)

      GBestF = fitness_new(j);

       GBestX = X_new(j,:);  

   end

  end

  X = X_new;

  fitness = fitness_new;

  % 排序更新

  [fitness, index]= sort(fitness); % 排序

  BestF = fitness(1);

  WorstF = fitness(end);

  for j = 1:pop

     X(j,:) = X(index(j),:);

  end

  curve(i) = GBestF;

end

Best_pos =GBestX;

Best_score = curve(end);

end

⛄ 运行结果

⛄ 参考文献

[1] 朱宝艳, 李彩虹, 宋莉,等. 基于栅格的可视图建模的移动机器人全局路径规划A*搜索算法[J].  2017.

[2] 张永妮. 智能机器人避障路径规划算法研究[J]. 中小企业管理与科技, 2016(4):2.

[3] 衣文秀. 基于图像识别技术的机器人路径规划研究与实现[D]. 沈阳师范大学, 2014.

[4] 沈孝龙, 王吉芳, 郭子昇. 基于改进麻雀搜索算法的机械臂路径规划[J]. 组合机床与自动化加工技术, 2023(1):6.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
213 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
146 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
159 8
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
162 0
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
140 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
113 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)

热门文章

最新文章