一、DCT变换原理
(1)DCT的基本原理是将实数信号转换为频域表示,离散余弦变换(DCT)是一种将实数函数转换为余弦函数的方法。它的基本原理是将实偶函数的离散傅立叶变换(DFT)简化,使得变换过程中只包含实数运算。在图像处理等领域,DCT可以有效地将图像中的高频和低频信息分离开来,从而达到压缩和增强的效果。
(2)基于DCT的数字水印嵌入步骤:对原始图像进行DCT变换。这将把图像从空间域转换到频域。通常,我们将图像分成8x8的块,然后对每个块进行DCT变换。在DCT变换后,我们选择适当的位置来嵌入水印信息。通常,我们会选择高频系数,因为它们对图像的视觉质量影响较小。将水印信息嵌入到选定的DCT系数中。这可以通过微小地改变这些系数来实现。嵌入的水印信息可以是二值化的灰度图像。对嵌入水印后的图像进行逆DCT变换,以得到带有水印的图像。
(3)基于离散余弦变换(DCT)的图像置乱步骤如下:
1、分割:首先将图像分割成8x8或16x16的小块。
2、DCT变换:对每个小块进行DCT变换。具体来说,对于N×N大小的256灰度级的宿主图像I进行N×N二维离散余弦变换(DCT)。以ZigZag方式对于DCT变换后的图像频率系数重新排列成一维向量 Y= {y1, y2,…yN×N}。
3、置乱:对DCT变换后的系数进行置乱。置乱的方式可以根据具体的应用需求来确定,例如可以使用Arnold变换。
4、逆DCT变换:对置乱后的DCT系数进行逆DCT变换,得到置乱后的图像。
(4)基于离散余弦变换(DCT)的图像置乱后的还原步骤如下:
1、读取置乱图像:首先,我们需要读取要进行还原的置乱图像。
2、分割:将置乱图像分割成8x8或16x16的小块。
3、DCT变换:对每个小块进行DCT变换。具体来说,对于N×N大小的256灰度级的宿主图像I进行N×N二维离散余弦变换(DCT)。以ZigZag方式对于DCT变换后的图像频率系数重新排列成一维向量 Y= {y1, y2,…yN×N}。
4、反置乱:对DCT变换后的系数进行反置乱。反置乱的方式需要和置乱时使用的方式相同,例如如果置乱时使用的是Arnold变换,那么反置乱时也需要使用Arnold反变换。
5、逆DCT变换:对反置乱后的DCT系数进行逆DCT变换,得到还原后的图像。
1、DCT变换方法实现图片的置乱及置乱后的图片恢复
% 读取图像 img = imread('test3.jpg'); % 确保图像是灰度图 if size(img, 3) == 3 img = rgb2gray(img); end % 获取图像的大小 [N, M] = size(img); % 对图像进行DCT变换 dct_img = dct2(img); % 创建一个随机置乱矩阵 rng(1); % 设置随机数生成器的种子以确保结果的可重复性 P = randperm(N); % 使用置乱矩阵对DCT变换后的图像进行置乱 dct_img_permuted = dct_img(P, P); % 对置乱后的图像进行逆DCT变换 img_permuted = uint8(idct2(dct_img_permuted)); % 保存置乱后的图像 imwrite(img_permuted, 'permuted_image.jpg'); % 对置乱后的图像进行DCT变换 dct_img_permuted = dct2(img_permuted); % 创建一个反置乱矩阵 P_inv(P) = 1:N; % 创建反置乱矩阵 % 使用反置乱矩阵对DCT变换后的图像进行反置乱 dct_img_recovered = dct_img_permuted(P_inv, P_inv); % 对反置乱后的图像进行逆DCT变换 img_recovered = uint8(idct2(dct_img_recovered)); % 保存恢复后的图像 imwrite(img_recovered, 'recovered_image.jpg');
二、DWT变换原理
(1)离散小波变换是一种信号处理技术,它将连续的信号分解为不同频率的子带信号,以便更好地分析和处理信号。离散小波变换则是在离散的时间或空间域上对信号进行变换。离散化后的小波变换具有更好的实时性和稳定性。
1、将原始信号进行低通滤波和高通滤波,得到两个子信号,即近似系数和细节系数;
2、对近似系数进行递归分解,得到若干个尺度下的近似系数和细节系数;
3、通过对细节系数进行递归分解,得到若干个尺度下的细节系数;
4、重构原始信号时,将不同尺度的近似系数和细节系数进行合并,得到重构后的信号。
(2)基于离散小波变换(DWT)的图像置乱步骤如下:
1、读取原始图像:首先,我们需要读取要进行置乱的原始图像。
2、DWT变换:对原始图像进行DWT变换,将图像分解为不同频率的子带。这一步通常会得到四个子图,分别代表低频近似(LL)、水平细节(LH)、垂直细节(HL)和对角线细节(HH)。
3、置乱:对DWT变换后的系数进行置乱。置乱的方式可以根据具体的应用需求来确定,例如可以使用Arnold变换。
4、逆DWT变换:对置乱后的DWT系数进行逆DWT变换,得到置乱后的图像。
(3)基于离散小波变换(DWT)的图像置乱后的还原步骤如下:
1、读取置乱图像:首先,我们需要读取要进行还原的置乱图像。
2、分割:将置乱图像分割成8x8或16x16的小块。
3、DWT变换:对每个小块进行DWT变换。具体来说,对于N×N大小的256灰度级的宿主图像I进行N×N二维离散小波变换(DWT)。以ZigZag方式对于DWT变换后的图像频率系数重新排列成一维向量 Y= {y1, y2,…yN×N}。
4、反置乱:对DWT变换后的系数进行反置乱。反置乱的方式需要和置乱时使用的方式相同,例如如果置乱时使用的是Arnold变换,那么反置乱时也需要使用Arnold反变换。
5、逆DWT变换:对反置乱后的DWT系数进行逆DWT变换,得到还原后的图像。
2、DWT变换方法实现图片的置乱及置乱后的图片恢复
% 读取图像 img = imread('test4.jpg'); % 获取图像的大小 [N, M, C] = size(img); % 对图像的每个通道进行DWT变换 dwt_img = zeros(N, M, C); for c = 1:C [cA,cH,cV,cD] = dwt2(img(:,:,c),'haar'); dwt_img(:,:,c) = [cA, cH; cV, cD]; end % 创建一个随机置乱矩阵 rng(1); % 设置随机数生成器的种子以确保结果的可重复性 P = randperm(N); % 使用置乱矩阵对DWT变换后的图像进行置乱 dwt_img_permuted = dwt_img(P, P, :); % 对置乱后的图像进行逆DWT变换 img_permuted = zeros(N, M, C); for c = 1:C img_permuted(:,:,c) = idwt2(dwt_img_permuted(1:N/2,1:M/2,c), dwt_img_permuted(1:N/2,M/2+1:M,c), dwt_img_permuted(N/2+1:N,1:M/2,c), dwt_img_permuted(N/2+1:N,M/2+1:M,c), 'haar'); end img_permuted = uint8(img_permuted); % 保存置乱后的图像 imwrite(img_permuted, 'permuted_image.jpg'); % 创建一个反置乱矩阵 P_inv(P) = 1:N; % 创建反置乱矩阵 % 使用反置乱矩阵对DWT变换后的图像进行反置乱 dwt_img_recovered = dwt_img_permuted(P_inv, P_inv, :); % 对反置乱后的图像进行逆DWT变换 img_recovered = zeros(N, M, C); for c = 1:C img_recovered(:,:,c) = idwt2(dwt_img_recovered(1:N/2,1:M/2,c), dwt_img_recovered(1:N/2,M/2+1:M,c), dwt_img_recovered(N/2+1:N,1:M/2,c), dwt_img_recovered(N/2+1:N,M/2+1:M,c), 'haar'); end img_recovered = uint8(img_recovered); % 保存恢复后的图像 imwrite(img_recovered, 'recovered_image.jpg');
三、matlab中的直方图
在matlab中,直方图是一种显示图像中强度分布的图,用于表示一幅图像中各个像素强度值的频率。它将数据分组为一系列的数据区间,并以条形的方式展示每个数据区间中的数据数量。
3、在matlab中生成彩色图像直方图
% 读取图像 img = imread('test5.jpg'); % 请将 'your_image.jpg' 替换为您的图像文件名 % 将图像转换为灰度图像 img_gray = rgb2gray(img); % 计算直方图 [counts, bins] = imhist(img_gray); % 绘制直方图 figure; bar(bins, counts); title('Histogram of Image(图像的直方图)'); xlabel('Pixel Intensity(像素强度)'); ylabel('Frequency(频率)'); % 保存直方图 saveas(gcf, 'histogram.png'); % 将 'histogram.png' 替换为您想要的输出文件名