基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证

简介: 这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。

1.算法运行效果图预览
matlab2022a的测试结果如下:

image.png

vivado2019.2的仿真结果如下:

image.png

将数据导入到matlab中,

image.png

系统的RTL结构图如下图所示:

image.png

系统包括中值滤波,RGB转换为ycbcr,人脸检测三个模块

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
肤色模型通常定义在特定的颜色空间中,常见的有RGB、HSV、YCbCr、Lab等。在这些颜色空间中,YCbCr因其能较好地分离亮度(Y)和色度信息(Cb和Cr),常被用于肤色检测。肤色模型可以是简单的阈值方法,也可以是复杂的概率模型,如高斯模型或混合高斯模型。

   对于给定的像素点Cbi,Cri),可以通过计算其在肤色模型下的概率密度值来判断是否属于肤色区域。如果该值超过某一阈值T,则认为该像素属于肤色区域:

image.png

   在肤色检测之前,通常需要对图像进行预处理,如灰度化、去噪、光照补偿等,以减少环境因素的干扰。对于彩色图像,首先将其从RGB空间转换至YCbCr空间:

image.png

   基于肤色模型,肤色分割通常采用阈值法或概率判决法。阈值法直接设定Cb和Cr的阈值范围,如:

image.png

   基于肤色模型的人脸识别技术利用了肤色在色彩空间中的统计特性,通过构建肤色概率模型实现人脸区域的初步定位。尽管这种方法对于复杂背景和光照变化敏感,但通过适当的预处理、后处理及模型优化,可以有效提升识别准确率。

4.部分核心程序

````timescale 1ns / 1ps

module TEST();

reg i_clk;
reg i_rst;
reg [7:0] Isave[0:220000];
integer fids;

integer dat;
integer Pix_begin;
integer Sizes;

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code\test.bmp","rb");
dat = $fread(Isave,fids);
//有效像素起始位置
Pix_begin = {Isave[13], Isave[12], Isave[11], Isave[10]};
//尺寸
Sizes = {Isave[5], Isave[4], Isave[3], Isave[2]};

$fclose(fids);

end

initial
begin
i_clk=1;
i_rst=1;

1000

i_rst=0;
end

always #5 i_clk=~i_clk;

integer jj=0;
reg [7:0]R;
reg [7:0]G;
reg [7:0]B;
always@(posedge i_clk)
begin
R<=Isave[jj+2];//这个datas可以用于输入到FPGA的后期处理
G<=Isave[jj+1];//这个datas可以用于输入到FPGA的后期处理
B<=Isave[jj];//这个datas可以用于输入到FPGA的后期处理
jj<=jj+3;
end

wire [7:0]o_Rmed,o_Gmed,o_Bmed;
wire [7:0]o_Y;// Y
wire [7:0]o_Cr;// Y
wire [7:0]o_Cb;// Y
wire [7:0]o_face_check;

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_R (R),
.i_G (G),
.i_B (B),
.o_Rmed (o_Rmed),
.o_Gmed (o_Gmed),
.o_Bmed (o_Bmed),
.o_Y (o_Y),// Y
.o_Cr (o_Cr),// Y
.o_Cb (o_Cb),// Y
.o_face_check (o_face_check)
);

integer fout1;
initial begin
fout1 = $fopen("face.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=65536*3+54 & jj>54)
$fwrite(fout1,"%d\n",o_face_check);
else
$fwrite(fout1,"%d\n",0);
end
endmodule

```

相关文章
|
3月前
|
存储 人工智能 测试技术
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
141239 29
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
|
3月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
18天前
|
安全 关系型数据库 MySQL
MySQL8使用物理文件恢复MyISAM表测试
MySQL8使用物理文件恢复MyISAM表测试
29 0
|
2月前
|
Oracle 关系型数据库 MySQL
使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试
这篇文章是作者尚雷关于使用崖山YMP迁移Oracle/MySQL至YashanDB 23.2的验证测试分享。介绍了YMP的产品信息,包括架构、版本支持等,还详细阐述了外置库部署、YMP部署、访问YMP、数据源管理、任务管理(创建任务、迁移配置、离线迁移、校验初始化、一致性校验)及MySQL迁移的全过程。
|
3月前
|
机器学习/深度学习 自然语言处理 API
阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
DeepSeek R1是基于Transformer架构的先进大规模深度学习模型,2025年1月20日发布并开源,遵循MIT License。它在自然语言处理等任务上表现出色,高效提取特征,缩短训练时间。阿里云推出的满血版方案解决了服务器压力问题,提供100万免费token,云端部署降低成本,用户可快速启动体验。虽然回答速度有待提升,但整体表现优异,备受关注。
163 8
|
3月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。
|
3月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
|
5月前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
147 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
5月前
|
算法 数据挖掘 测试技术
犬类癌症检测(CANDiD)研究:使用独立测试集对1000多只犬进行基于高通量测序的多癌种早期检测"液体活检"血液测试的临床验证
这项研究首次在大规模独立测试集上验证了基于NGS的液体活检在犬类多癌种检测中的应用。该方法具有很高的特异性,可以作为一种新的无创癌症筛查和辅助诊断工具。通过早期发现癌症,有望改善犬类癌症的诊断和管理模式。
95 12
|
7月前
|
运维
【运维基础知识】用dos批处理批量替换文件中的某个字符串(本地单元测试通过,部分功能有待优化,欢迎指正)
该脚本用于将C盘test目录下所有以t开头的txt文件中的字符串“123”批量替换为“abc”。通过创建批处理文件并运行,可实现自动化文本替换,适合初学者学习批处理脚本的基础操作与逻辑控制。
409 56

热门文章

最新文章