基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证

简介: 这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。

1.算法运行效果图预览
matlab2022a的测试结果如下:

image.png

vivado2019.2的仿真结果如下:

image.png

将数据导入到matlab中,

image.png

系统的RTL结构图如下图所示:

image.png

系统包括中值滤波,RGB转换为ycbcr,人脸检测三个模块

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
肤色模型通常定义在特定的颜色空间中,常见的有RGB、HSV、YCbCr、Lab等。在这些颜色空间中,YCbCr因其能较好地分离亮度(Y)和色度信息(Cb和Cr),常被用于肤色检测。肤色模型可以是简单的阈值方法,也可以是复杂的概率模型,如高斯模型或混合高斯模型。

   对于给定的像素点Cbi,Cri),可以通过计算其在肤色模型下的概率密度值来判断是否属于肤色区域。如果该值超过某一阈值T,则认为该像素属于肤色区域:

image.png

   在肤色检测之前,通常需要对图像进行预处理,如灰度化、去噪、光照补偿等,以减少环境因素的干扰。对于彩色图像,首先将其从RGB空间转换至YCbCr空间:

image.png

   基于肤色模型,肤色分割通常采用阈值法或概率判决法。阈值法直接设定Cb和Cr的阈值范围,如:

image.png

   基于肤色模型的人脸识别技术利用了肤色在色彩空间中的统计特性,通过构建肤色概率模型实现人脸区域的初步定位。尽管这种方法对于复杂背景和光照变化敏感,但通过适当的预处理、后处理及模型优化,可以有效提升识别准确率。

4.部分核心程序

````timescale 1ns / 1ps

module TEST();

reg i_clk;
reg i_rst;
reg [7:0] Isave[0:220000];
integer fids;

integer dat;
integer Pix_begin;
integer Sizes;

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code\test.bmp","rb");
dat = $fread(Isave,fids);
//有效像素起始位置
Pix_begin = {Isave[13], Isave[12], Isave[11], Isave[10]};
//尺寸
Sizes = {Isave[5], Isave[4], Isave[3], Isave[2]};

$fclose(fids);

end

initial
begin
i_clk=1;
i_rst=1;

1000

i_rst=0;
end

always #5 i_clk=~i_clk;

integer jj=0;
reg [7:0]R;
reg [7:0]G;
reg [7:0]B;
always@(posedge i_clk)
begin
R<=Isave[jj+2];//这个datas可以用于输入到FPGA的后期处理
G<=Isave[jj+1];//这个datas可以用于输入到FPGA的后期处理
B<=Isave[jj];//这个datas可以用于输入到FPGA的后期处理
jj<=jj+3;
end

wire [7:0]o_Rmed,o_Gmed,o_Bmed;
wire [7:0]o_Y;// Y
wire [7:0]o_Cr;// Y
wire [7:0]o_Cb;// Y
wire [7:0]o_face_check;

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_R (R),
.i_G (G),
.i_B (B),
.o_Rmed (o_Rmed),
.o_Gmed (o_Gmed),
.o_Bmed (o_Bmed),
.o_Y (o_Y),// Y
.o_Cr (o_Cr),// Y
.o_Cb (o_Cb),// Y
.o_face_check (o_face_check)
);

integer fout1;
initial begin
fout1 = $fopen("face.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=65536*3+54 & jj>54)
$fwrite(fout1,"%d\n",o_face_check);
else
$fwrite(fout1,"%d\n",0);
end
endmodule

```

相关文章
|
4月前
|
JSON 数据格式 Python
【2023最新】Matlab 保存JSON数据集文件,并用Python读取
本文介绍了如何使用MATLAB生成包含数据和标签的JSON格式数据集文件,并展示了用Python读取该JSON文件作为训练集的方法。
145 1
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
4月前
Matlab批量修改指定文件下文件名
Matlab批量修改指定文件下文件名
200 1
|
4月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
4月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
|
5月前
|
机器学习/深度学习 监控 算法框架/工具
使用Python实现深度学习模型:人脸识别与人脸表情分析
【7月更文挑战第18天】 使用Python实现深度学习模型:人脸识别与人脸表情分析
253 2
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
140 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
107 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章

下一篇
DataWorks