7 Papers & Radios | OpenAI文本生成图像新模型GLIDE;培养皿中百万人脑细胞打乒乓(1)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 7 Papers & Radios | OpenAI文本生成图像新模型GLIDE;培养皿中百万人脑细胞打乒乓

本周论文包括OpenAI 文本生成图像新模型 GLIDE 用 35 亿参数媲美 DALL-E;黑客帝国「缸中之脑」有眉目了?培养皿中百万人脑细胞学会打乒乓球,仅用了 5 分钟。


目录:

GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Plenoxels: Radiance Fields without Neural Networks

BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View

Quantifying the Effect of Public Activity Intervention Policies on COVID-19 Pandemic Containment Using Epidemiologic Data From 145 Countries

Boosting the Transferability of Video Adversarial Examples via Temporal Translation

In Vitro Neurons Learn and Exhibit Sentience when Embodied in a Simulated Game-world

Learning to Compose Visual Relations

ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)


论文 1:GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

作者:Alex Nichol、Prafulla Dhariwal、Aditya Ramesh 等

论文地址:https://arxiv.org/pdf/2112.10741.pdf


摘要:从年初 OpenAI 刷屏社区的 DALL-E 到英伟达生成逼真摄影的 GauGAN2,文本生成图像可谓是今年大火的一个研究方向。现在 OpenAI 又有了新的进展——35 亿参数的新模型 GLIDE。除了从文本生成图像,GLIDE 还有图像编辑功能——使用文本 prompt 修改现有图像,在必要时插入新对象、阴影和反射。GLIDE 的零样本生成和修复复杂场景的能力也很强。GLIDE 还能够将草图转换为逼真的图像编辑。

上述功能是怎样实现的呢?在新模型 GLIDE 中,OpenAI 将指导扩散(guided diffusion)应用于文本生成图像的问题。首先该研究训练了一个 35 亿参数的扩散模型,使用文本编码器以自然语言描述为条件,然后比较了两种指导扩散模型至文本 prompt 的方法:CLIP 指导和无分类器指导。通过人工和自动评估,该研究发现无分类器指导能够产生更高质量的图像。

在草坪上添加斑马

一只戴着领结和生日帽的柯基犬从涂鸦草图转换成了逼真的图像。


推荐:缩小规模,OpenAI 文本生成图像新模型 GLIDE 用 35 亿参数媲美 DALL-E

论文 2:Plenoxels: Radiance Fields without Neural Networks

作者:Alex Yu、Sara Fridovich-Keil、Matthew Tancik 等

论文地址:https://arxiv.org/pdf/2112.05131.pdf


摘要:在本文中,来自加州大学伯克利分校的研究者瞄准了这一问题,提出了一种名为 Plenoxels 的新方法。这项新研究表明,即使没有神经网络,从头训练一个辐射场(radiance field)也能达到 NeRF 的生成质量,而且优化速度提升了两个数量级。

他们提供了一个定制的 CUDA 实现,利用模型的简单性来达到可观的加速。在有界场景中,Plenoxels 在单个 Titan RTX GPU 上的典型优化时间是 11 分钟,NeRF 大约是一天,前者实现了 100 多倍的加速;在无界场景中,Plenoxels 的优化时间大约为 27 分钟,NeRF++ 大约是四天,前者实现了 200 多倍的加速。虽然 Plenoxels 的实现没有针对快速渲染进行优化,但它能以 15 帧 / 秒的交互速率渲染新视点。如果想要更快的渲染速度,优化后的 Plenoxel 模型可以被转换为 PlenOctree。

Plenoxel 概览。


效果展示。


推荐:神经辐射场去掉「神经」,训练速度提升 100 多倍,3D 效果质量不减

论文 3:BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View

作者:Junjie Huang、Guan Huang、Zheng Zhu 等

论文地址:https://arxiv.org/abs/2112.11790


摘要:日前,在自动驾驶权威评测集 nuScenes 上,鉴智机器人凭借提出的纯视觉自动驾驶 3D 感知新范式 BEVDet,以绝对优势获得纯视觉 3D 目标检测世界第一的成绩。BEVDet 是首个公开的同时兼具高性能、扩展性和实用性的 BEV 空间 3D 感知范式,以 BEVDet 为核心的系列技术将有希望解决视觉为主自动驾驶解决方案中视觉雷达、4D 感知、实时局部地图等关键问题,未来将应用于鉴智机器人以视觉雷达为核心的高级别自动驾驶等产品和解决方案中,为自动驾驶的大规模量产发挥关键的作用。

鉴智机器人提出了下一代纯视觉自动驾驶 3D 目标检测框架 BEVDet。BEVDet 遵循模块化设计的理念,包含以下四个分工明确的模块:图像编码模块用于在二维图像空间提取高纬度的特征;视角变换模块用于把图像空间的特征转换到鸟瞰视角空间(Bird-Eye-View, BEV)的特征;鸟瞰视角的编码模块用于在鸟瞰视角下进一步提取特征;以及一个三维目标预测模块(Head)用于在鸟瞰视角空间对三维目标的定位、尺度、朝向、速度和类别的预测。BEVDet 通过上述的四个模块简洁的解决纯视觉自动驾驶 3D 目标检测的问题。

BEVDet 整体框架


BEVDet 在纯视觉 3D 目标检测公开测试集上同时具备高性能和低算力要求的特点



相关文章
|
1月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
110 2
|
1月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
52 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
1月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
52 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
1月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
48 0
|
2月前
|
人工智能 测试技术 开发者
微软发布强大的新Phi-3.5模型,击败谷歌、OpenAI等
微软发布强大的新Phi-3.5模型,击败谷歌、OpenAI等
|
2月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
338 73
|
2月前
|
人工智能 Serverless API
一键服务化:从魔搭开源模型到OpenAI API服务
在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。
一键服务化:从魔搭开源模型到OpenAI API服务
|
2月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
63 7
|
2月前
|
机器学习/深度学习 人工智能 供应链
【通义】AI视界|OpenAI的“草莓”模型预计两周内上线!像人类一样思考!
本文介绍了近期科技领域的五大亮点:OpenAI即将推出的新一代AI模型“草莓”,具备高级推理能力;亚马逊测试AI技术加速有声读物生产,通过语音克隆提高效率;Kimi API新增联网搜索功能,拓宽信息来源;顺丰发布物流行业专用大语言模型“丰语”,提升工作效率;钉钉推出“AI班级群”功能,改善家校沟通体验。更多详情,请访问[通义官网]。
下一篇
无影云桌面