Kimi开源MoE架构多模态推理模型,小激活参数,大能量!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 最近Moonshot AI推出了 Kimi-VL,这是一个高效的开源混合专家(MoE)视觉-语言模型(VLM),它提供了先进的多模态推理、长上下文理解以及强大的代理能力——所有这些功能都只需激活其语言解码器中的2.8B参数(Kimi-VL-A3B)。

引言

最近Moonshot AI推出了 Kimi-VL,这是一个高效的开源混合专家(MoE)视觉-语言模型(VLM),它提供了先进的多模态推理、长上下文理解以及强大的代理能力——所有这些功能都只需激活其语言解码器中的2.8B参数(Kimi-VL-A3B)。

课代表敲黑板,Kimi-VL 在多个具有挑战性的领域中表现出色:

  1. 作为一个通用的 VLM,Kimi-VL 在多轮次代理交互任务(例如,OSWorld)上表现出色,达到了与旗舰模型相当的最先进结果。
  2. 它在多种多样且具有挑战性的视觉语言任务中展示了非凡的能力,包括大学水平的图像和视频理解、光学字符识别 (OCR)、数学推理、多图像理解等。
  3. 在对比评估中,它有效地与 GPT-4o-mini、Qwen2.5-VL-7B 和 Gemma-3-12B-IT 等前沿高效 VLM 竞争,并在几个专业领域超越了 GPT-4o。
  4. 模型配备了一个 128K 的扩展上下文窗口,Kimi-VL 可以处理长而多样化的输入,在 LongVideoBench 上得分为 64.5,在 MMLongBench-Doc 上得分为 35.1;
  5. 其原生分辨率视觉编码器 MoonViT 进一步使其能够看到并理解超高分辨率的视觉输入,在 InfoVQA 上得分为 83.2,在 ScreenSpot-Pro 上得分为 34.5,同时在处理常见的视觉输入和一般任务时保持较低的计算成本。

基于这一基础,Moonshot同时推出了:Kimi-VL-Thinking。通过长链思维(CoT)监督微调(SFT)和强化学习(RL)开发,该模型展现出强大的长期推理能力。它在 MMMU 上得分 61.7,在 MathVision 上得分 36.8,在 MathVista 上得分 71.3,同时保持紧凑的 2.8B 激活 LLM 参数量,为高效且能力强的多模态思考模型树立了新标准。

模型架构

该模型采用 MoE 语言模型、原生分辨率视觉编码器(MoonViT)和 MLP 投影仪,如下图所示。

image.png

模型列表

对于一般的多模态感知和理解、OCR、长视频和长文档、视频感知以及代理用途,推荐使用 Kimi-VL-A3B-Instruct 以实现高效的推理;对于高级文本和多模态推理(例如数学),请考虑使用 Kimi-VL-A3B-Thinking

模型

总参数数

激活参数数

上下文长度

下载链接

Kimi-VL-A3B-Instruct

16B

3B

128K

https://www.modelscope.cn/models/moonshotai/Kimi-VL-A3B-Instruct

Kimi-VL-A3B-Thinking

16B

3B

128K

https://www.modelscope.cn/models/moonshotai/Kimi-VL-A3B-Thinking

模型性能

凭借有效的长思考能力,Kimi-VL-A3B-Thinking 在 MathVision 基准测试中的表现可以与 30B/70B 的前沿开源 VLMs 相媲美:

image.png

模型推理

使用 transformers 库使用Thinking模型。

from PIL import Image
from modelscope import AutoModelForCausalLM, AutoProcessor
model_path = "moonshotai/Kimi-VL-A3B-Thinking"
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
image_paths = ["./figures/demo1.png", "./figures/demo2.png"]
images = [Image.open(path) for path in image_paths]
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image_path} for image_path in image_paths
        ] + [{"type": "text", "text": "Please infer step by step who this manuscript belongs to and what it records"}],
    },
]
text = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
inputs = processor(images=images, text=text, return_tensors="pt", padding=True, truncation=True).to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=2048)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
response = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(response)

显存占用:

image.png

目录
相关文章
|
9天前
|
人工智能 负载均衡 数据可视化
10分钟上手全球开源模型冠军 Qwen3
阿里通义千问Qwen3在最新全球AI基准测试中智能水平位列全球前五,开源第一,且成本优势显著,推理成本仅为DeepSeek-R1的1/3、Claude 3.7的1/20。Qwen3支持119种语言,具备强大的代码和数学能力,同时提供思考与非思考两种模式无缝切换,适合复杂与简单任务。通过阿里云百炼平台,用户可在10分钟内快速搭建Qwen3模型服务,结合Cherry Studio客户端实现便捷交互。本文详细介绍了Qwen3的部署、体验及工具调用能力,帮助用户轻松上手。
317 68
|
10天前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
113 17
|
8天前
|
人工智能 监控 API
狂揽22.6k星!这个开源工具让你一键调用100+大模型,开发效率直接起飞!
LiteLLM是由BerriAI团队开发的开源项目,通过标准化OpenAI格式API接口,支持调用100+主流大语言模型(如OpenAI、Azure、Anthropic等)。其核心功能包括统一调用方式、企业级智能路由、异步流式响应及环境变量管理。项目适用于企业AI中台搭建、多模型对比测试、教育科研实验等场景。技术架构涵盖接口层、路由层、管理层与监控层,提供高效稳定的服务。相比LangChain、LlamaIndex等项目,LiteLLM在多平台混合开发方面优势显著。项目地址:https://github.com/BerriAI/litellm。
|
12天前
|
人工智能 缓存 自然语言处理
Bolt DIY架构揭秘:从模型初始化到响应生成的技术之旅
在使用Bolt DIY或类似的AI对话应用时,你是否曾好奇过从输入提示词到获得回答的整个过程是如何运作的?当你点击发送按钮那一刻,背后究竟发生了什么?本文将揭开这一过程的神秘面纱,深入浅出地解析AI对话系统的核心技术架构。
47 5
|
1天前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
26 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
2天前
|
人工智能 自然语言处理 语音技术
全模态通义千问Qwen2.5-Omni大模型开源,7B尺寸实现全球最强性能
Qwen2.5-Omni采用“Thinker-Talker”双核架构,Thinker负责多模态输入处理,Talker实现流式语音合成,二者无缝协作。该模型在多模态任务OmniBench中达到SOTA表现,并在多个单模态领域超越同类模型。作为通义系列首个端到端全模态大模型,Qwen2.5-Omni支持文本、图像、音频和视频等多种输入输出形式,具备情绪识别与自然反馈能力。现已开源,开发者可通过多个平台免费体验和下载。
|
2天前
|
人工智能 编解码 搜索推荐
通义万相新模型开源,首尾帧图一键生成特效视频!
通义万相首尾帧生视频14B模型正式开源,作为首个百亿级参数规模的开源模型,可依据用户提供的开始与结束图片生成720p高清衔接视频,满足延时摄影、变身等定制化需求。用户上传两张图片或输入提示词即可完成复杂视频生成任务,支持运镜控制和特效变化。该模型基于Wan2.1架构改进,训练数据专门构建,确保高分辨率和流畅性。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。
|
2天前
|
人工智能 负载均衡 API
长连接网关技术专题(十二):大模型时代多模型AI网关的架构设计与实现
随着 AI 技术快速发展,业务对 AI 能力的渴求日益增长。当 AI 服务面对处理大规模请求和高并发流量时,AI 网关从中扮演着至关重要的角色。AI 服务通常涉及大量的计算任务和设备资源占用,此时需要一个 AI 网关负责协调这些请求来确保系统的稳定性与高效性。因此,与传统微服务架构类似,我们将相关 API 管理的功能(如流量控制、用户鉴权、配额计费、负载均衡、API 路由等)集中放置在 AI 网关层,可以降低系统整体复杂度并提升可维护性。 本文要分享的是B站在大模型时代基于多模型AI的网关架构设计和实践总结,希望能带给你启发。
29 4
|
9天前
|
编解码 人工智能
通义万相Wan2.1-VACE开源!业内首个视频编辑统一模型!附推理教程
通义万相Wan2.1-VACE开源!业内首个视频编辑统一模型!附推理教程
201 7

热门文章

最新文章