【路径规划-VRP问题】基于遗传算法求解带时间窗的车辆路径问题附matlab代码

简介: 【路径规划-VRP问题】基于遗传算法求解带时间窗的车辆路径问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

有时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW)因为其有重要的现实意义而备受关注.其时间窗即为客户接受服务的时间范围,该问题是运筹学和组合优化领域中的著名NP问题,是解决物流配送效率的关键,传统寻优方法效率低,耗时长,找不到满意解,往往导致物流成本过高.为了提高寻优效率,降低物流运送成本,基本遗传算法求解VRPTW问题.首先建立数学模型,然后基于大规模邻域搜索算法(LNS)生成遗传算法初始解,最后利用遗传算法在初始种群中找到最优解.计算结果表明,遗传算法可以更好求解车辆路径问题,有效降低物流成本.

⛄ 部分代码

tic

clear

clc

%% 用xlsread函数来读取xlsx文件

dataset=xlsread('实例验证数据.xlsx','转换后数据','A2:G17');

cap=150;                                                                %车辆最大装载量

v=30/60;                                                                %车辆行驶速度=30km/h=30/60km/min

%% 提取数据信息

E=dataset(1,5);                                                         %配送中心时间窗开始时间

L=dataset(1,6);                                                         %配送中心时间窗结束时间

vertexs=dataset(:,2:3);                                                 %所有点的坐标x和y

customer=vertexs(2:end,:);                                              %顾客坐标

cusnum=size(customer,1);                                                %顾客数

v_num=min(25,cusnum);                                                   %车辆最多使用数目

demands=dataset(2:end,4);                                               %需求量

a=dataset(2:end,5);                                                     %顾客时间窗开始时间[a[i],b[i]]

b=dataset(2:end,6);                                                     %顾客时间窗结束时间[a[i],b[i]]

s=dataset(2:end,7);                                                     %客户点的服务时间

h=pdist(vertexs);                                                       %计算各个节点之间的距离

dist=squareform(h);                                                     %距离矩阵

⛄ 运行结果


⛄ 参考文献

[1]张露. (2020). 基于改进遗传算法求解带时间窗车辆路径规划问题. 中国物流与采购(14).

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
219 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
106 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
7月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
7月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
7月前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)