OpenCV 1 图像分割--分水岭算法代码

简介: // watershed_test20140801.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" // // ch9_watershed image // This is an exact copy of the watershed.
// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

//
// ch9_watershed image
//   This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting 
//
/* *************** License:**************************
   Oct. 3, 2008
   Right to use this code in any way you want without warrenty, support or any guarentee of it working.

   BOOK: It would be nice if you cited it:
   Learning OpenCV: Computer Vision with the OpenCV Library
     by Gary Bradski and Adrian Kaehler
     Published by O'Reilly Media, October 3, 2008
 
   AVAILABLE AT: 
     http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
     Or: http://oreilly.com/catalog/9780596516130/
     ISBN-10: 0596516134 or: ISBN-13: 978-0596516130    

   OTHER OPENCV SITES:
   * The source code is on sourceforge at:
     http://sourceforge.net/projects/opencvlibrary/
   * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
     http://opencvlibrary.sourceforge.net/
   * An active user group is at:
     http://tech.groups.yahoo.com/group/OpenCV/
   * The minutes of weekly OpenCV development meetings are at:
     http://pr.willowgarage.com/wiki/OpenCV
   ************************************************** */

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;


IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1};

void on_mouse( int event, int x, int y, int flags, void* param )
{
    if( !img )
        return;

    if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
        prev_pt = cvPoint(-1,-1);
    else if( event == CV_EVENT_LBUTTONDOWN )
        prev_pt = cvPoint(x,y);
    else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
    {
        CvPoint pt = cvPoint(x,y);
        if( prev_pt.x < 0 )
            prev_pt = pt;
        cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
        cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
        prev_pt = pt;
        cvShowImage( "image", img );
    }
}


int main( int argc, char** argv )
{
    cout<<"input image name:  "<<endl; 
	string file;
	cin>>file;


	char* filename = (char *)file.c_str();

    CvRNG rng = cvRNG(-1);

    if( (img0 = cvLoadImage(filename,1)) == 0 )
        return 0;

    printf( "Hot keys: \n"
            "\tESC - quit the program\n"
            "\tr - restore the original image\n"
            "\tw or ENTER - run watershed algorithm\n"
            "\t\t(before running it, roughly mark the areas on the image)\n"
            "\t  (before that, roughly outline several markers on the image)\n" );
    
    cvNamedWindow( "image", 1 );
    cvNamedWindow( "watershed transform", 1 );

    img = cvCloneImage( img0 );
    img_gray = cvCloneImage( img0 );
    wshed = cvCloneImage( img0 );
    marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
    markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
    cvCvtColor( img, marker_mask, CV_BGR2GRAY );
    cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );

    cvZero( marker_mask );
    cvZero( wshed );
    cvShowImage( "image", img );
    cvShowImage( "watershed transform", wshed );
    cvSetMouseCallback( "image", on_mouse, 0 );

    for(;;)
    {
        int c = cvWaitKey(0);

        if( (char)c == 27 )
            break;

        if( (char)c == 'r' )
        {
            cvZero( marker_mask );
            cvCopy( img0, img );
            cvShowImage( "image", img );
        }

        if( (char)c == 'w' || (char)c == '\n' )
        {
            CvMemStorage* storage = cvCreateMemStorage(0);
            CvSeq* contours = 0;
            CvMat* color_tab;
            int i, j, comp_count = 0;
            //cvSaveImage( "wshed_mask.png", marker_mask );
            //marker_mask = cvLoadImage( "wshed_mask.png", 0 );
            cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
                            CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
            cvZero( markers );
            for( ; contours != 0; contours = contours->h_next, comp_count++ )
            {
                cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
                                cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
            }

            color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
            for( i = 0; i < comp_count; i++ )
            {
                uchar* ptr = color_tab->data.ptr + i*3;
                ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
                ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
                ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
            }

            {
            double t = (double)cvGetTickCount();
            cvWatershed( img0, markers );
            t = (double)cvGetTickCount() - t;
            printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
            }

            // paint the watershed image
            for( i = 0; i < markers->height; i++ )
                for( j = 0; j < markers->width; j++ )
                {
                    int idx = CV_IMAGE_ELEM( markers, int, i, j );
                    uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
                    if( idx == -1 )
                        dst[0] = dst[1] = dst[2] = (uchar)255;
                    else if( idx <= 0 || idx > comp_count )
                        dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
                    else
                    {
                        uchar* ptr = color_tab->data.ptr + (idx-1)*3;
                        dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
                    }
                }

            cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
            cvShowImage( "watershed transform", wshed );
            cvReleaseMemStorage( &storage );
            cvReleaseMat( &color_tab );
        }
    }

    return 1;
}


相关文章
|
5天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
8天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
17天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
18 3
|
16天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
29天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
30天前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
257 65
|
22天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
16 0
|
1月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
64 0
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)