OpenCV 1 图像分割--分水岭算法代码

简介: // watershed_test20140801.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" // // ch9_watershed image // This is an exact copy of the watershed.
// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

//
// ch9_watershed image
//   This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting 
//
/* *************** License:**************************
   Oct. 3, 2008
   Right to use this code in any way you want without warrenty, support or any guarentee of it working.

   BOOK: It would be nice if you cited it:
   Learning OpenCV: Computer Vision with the OpenCV Library
     by Gary Bradski and Adrian Kaehler
     Published by O'Reilly Media, October 3, 2008
 
   AVAILABLE AT: 
     http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
     Or: http://oreilly.com/catalog/9780596516130/
     ISBN-10: 0596516134 or: ISBN-13: 978-0596516130    

   OTHER OPENCV SITES:
   * The source code is on sourceforge at:
     http://sourceforge.net/projects/opencvlibrary/
   * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
     http://opencvlibrary.sourceforge.net/
   * An active user group is at:
     http://tech.groups.yahoo.com/group/OpenCV/
   * The minutes of weekly OpenCV development meetings are at:
     http://pr.willowgarage.com/wiki/OpenCV
   ************************************************** */

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;


IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1};

void on_mouse( int event, int x, int y, int flags, void* param )
{
    if( !img )
        return;

    if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
        prev_pt = cvPoint(-1,-1);
    else if( event == CV_EVENT_LBUTTONDOWN )
        prev_pt = cvPoint(x,y);
    else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
    {
        CvPoint pt = cvPoint(x,y);
        if( prev_pt.x < 0 )
            prev_pt = pt;
        cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
        cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
        prev_pt = pt;
        cvShowImage( "image", img );
    }
}


int main( int argc, char** argv )
{
    cout<<"input image name:  "<<endl; 
	string file;
	cin>>file;


	char* filename = (char *)file.c_str();

    CvRNG rng = cvRNG(-1);

    if( (img0 = cvLoadImage(filename,1)) == 0 )
        return 0;

    printf( "Hot keys: \n"
            "\tESC - quit the program\n"
            "\tr - restore the original image\n"
            "\tw or ENTER - run watershed algorithm\n"
            "\t\t(before running it, roughly mark the areas on the image)\n"
            "\t  (before that, roughly outline several markers on the image)\n" );
    
    cvNamedWindow( "image", 1 );
    cvNamedWindow( "watershed transform", 1 );

    img = cvCloneImage( img0 );
    img_gray = cvCloneImage( img0 );
    wshed = cvCloneImage( img0 );
    marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
    markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
    cvCvtColor( img, marker_mask, CV_BGR2GRAY );
    cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );

    cvZero( marker_mask );
    cvZero( wshed );
    cvShowImage( "image", img );
    cvShowImage( "watershed transform", wshed );
    cvSetMouseCallback( "image", on_mouse, 0 );

    for(;;)
    {
        int c = cvWaitKey(0);

        if( (char)c == 27 )
            break;

        if( (char)c == 'r' )
        {
            cvZero( marker_mask );
            cvCopy( img0, img );
            cvShowImage( "image", img );
        }

        if( (char)c == 'w' || (char)c == '\n' )
        {
            CvMemStorage* storage = cvCreateMemStorage(0);
            CvSeq* contours = 0;
            CvMat* color_tab;
            int i, j, comp_count = 0;
            //cvSaveImage( "wshed_mask.png", marker_mask );
            //marker_mask = cvLoadImage( "wshed_mask.png", 0 );
            cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
                            CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
            cvZero( markers );
            for( ; contours != 0; contours = contours->h_next, comp_count++ )
            {
                cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
                                cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
            }

            color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
            for( i = 0; i < comp_count; i++ )
            {
                uchar* ptr = color_tab->data.ptr + i*3;
                ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
                ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
                ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
            }

            {
            double t = (double)cvGetTickCount();
            cvWatershed( img0, markers );
            t = (double)cvGetTickCount() - t;
            printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
            }

            // paint the watershed image
            for( i = 0; i < markers->height; i++ )
                for( j = 0; j < markers->width; j++ )
                {
                    int idx = CV_IMAGE_ELEM( markers, int, i, j );
                    uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
                    if( idx == -1 )
                        dst[0] = dst[1] = dst[2] = (uchar)255;
                    else if( idx <= 0 || idx > comp_count )
                        dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
                    else
                    {
                        uchar* ptr = color_tab->data.ptr + (idx-1)*3;
                        dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
                    }
                }

            cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
            cvShowImage( "watershed transform", wshed );
            cvReleaseMemStorage( &storage );
            cvReleaseMat( &color_tab );
        }
    }

    return 1;
}


相关文章
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
180 65
|
12天前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
2天前
|
机器学习/深度学习 存储 算法
经典算法代码
这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
15 3
|
12天前
|
算法 定位技术 vr&ar
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
65 0
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
|
23天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
38 2
|
28天前
|
搜索推荐 算法 Java
|
13天前
|
计算机视觉 Python
opencv在pycharm不能自动补全代码
opencv在pycharm不能自动补全代码
19 0
|
13天前
|
人工智能 算法 数据可视化
DBSCAN密度聚类算法(理论+图解+python代码)
DBSCAN密度聚类算法(理论+图解+python代码)
|
20天前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
14 0
|
27天前
|
搜索推荐 算法 Java
插入排序算法(Java代码实现)
这篇文章通过Java代码示例详细解释了插入排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过插入排序对数组进行升序排列。
下一篇
DDNS