基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

简介: 基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

1 主要内容

该程序复现文章《市场模式下光伏用户群的电能共享与需求响应模型》,为了使光伏用户群内各经济主体能实现有序的电能交易,提出了一种基于光伏电能供需比(SDR)的内部价格模型。在考虑经济性和舒适度的基础上,提出了用户参与需求响应(DR)的效用成本模型。由于内部电价是以各时段光伏用户群内的供需比为基础,用户之间针对电价的需求响应行为可构成非合作博弈,在证明该博弈问题存在纳什均衡解的基础上,提出了分布式优化算法对用户的纳什均衡策略进行求解。最后,通过实际算例验证了所提模型在减少用电成本、提高光功率互用水平上的有效性。程序采用matlab编制,该程序注释较少,适合于有编程经验的同学进一步学习提升!

  • 光伏用户群结构

对于分布式光伏用户,首选光功率自消纳,光功率过剩时由服务商按内部购电电价收购,光伏功率不足时从服务商按内部售电电价购电。对于邻近的分布式光伏用户,其光照和温度等外部环境相同,导致光功率输出特性大致相同,但是由于不同用户间 的负荷特性普遍存在差异,因此净功率的差异为光 功率互用提供了基础条件。
  • 电能共享价格模型

  • 程序过程

2 部分代码

clear ;
clc;
load RU2;
RU2 = RU2(:,[1 3 4 2 5]);
s1 = [0;0;0;0;0;0;0.04;1.276;3.66;4.72;5.52;5.6;5.4;5.28;5.16;4.48;3.48;1.24;0.04;0;0;0;0;0];
s2 = [0;0;0;0;0;0;0;0;0.17;0.69;1.38;3.11;4.67;5.01;5.01;4.84;5.36;4.67;2.07;0.69;0.17;0;0;0];
s3 = [0;0;0;0;0;0;0;0;0.105;2.385;3.681;4.716;5.91;5.7;5.55;5.07;4.05;1.92;0.21;0;0;0;0;0];
s4 = [0;0;0;0;0;0;0;0;1.01;2.53;3.7;4.55;5.06;5.08;4.65;3.79;2.6;0.55;0.05;0;0;0;0;0];
s5 = [0;0;0;0;0;0;0.018;0.97;2.255;3.465;4.552;5.29;5.57;5.45;5.225;4.33;3.06;1.75;0.378;0;0;0;0;0];
% psell = [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 0.8 0.8 1.3 1.3 1.3 1.3 0.8 0.8 0.8 0.8 1.3 1.3 1.3 0.8 0.8];
% load solar;
% solar = solar';
solar = [40*s1,20*s2,40*s3,30*s4,60*s5];
solar = solar(:,[1 3 4 2 5]);
% RU2 = RU2/1000;
% solar = solar/1000;
%solar = solar*5;
% global p;% k ;
Load = RU2 - solar;%[RU2(:,1)-40*s1,RU2(:,2)-20*s2,RU2(:,3)-40*s3,RU2(:,4)-30*s4,RU2(:,5)-60*s5];%设置光伏装配数量
% p = p*1000;
t_start = tic;
MAX_ITER = 40;
ABSTOL = 0.01;
RELTOL = 1e-3;
N = 5;%
x = zeros(24,N);
% k = 1; 
u = zeros(24,N);
rs = zeros(2,MAX_ITER);
totfeerecord = zeros(1,MAX_ITER);
pSrecord = zeros(24,MAX_ITER);
pBrecord = zeros(24,MAX_ITER);
x1record = zeros(24,MAX_ITER);
x2record = zeros(24,MAX_ITER);
x3record = zeros(24,MAX_ITER);
x4record = zeros(24,MAX_ITER);
x5record = zeros(24,MAX_ITER);
    x1record(:,1) = RU2(:,1);
    x2record(:,1) = RU2(:,2);
    x3record(:,1) = RU2(:,3);
    x4record(:,1) = RU2(:,4);
    x5record(:,1) = RU2(:,5);
    pSrecord(:,1) = 0.4*ones(24,1);
    pBrecord(:,1) = ones(24,1);
x1L = zeros(24,MAX_ITER);
x2L = zeros(24,MAX_ITER);
x3L = zeros(24,MAX_ITER);
x4L= zeros(24,MAX_ITER);
x5L = zeros(24,MAX_ITER);
% exitfalgrecord = zeros(N,96);
p = getPrice(Load);%集群买卖电价
pacture = p;
for i=2:MAX_ITER
    pSrecord(:,i) = p(:,1);
    pBrecord(:,i) = p(:,2);
    [x,exitflag] = update_x(x,RU2,solar,p);
    %Load = [x(:,1)-25*s1,x(:,2)-30*s2,x(:,3)-10*s3];%设置光伏装配数量


3 程序结果

部分原文结果

4 下载链接

相关文章
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
206 80
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
1月前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。