我在STM32单片机上跑神经网络算法—CUBE-AI

简介: 为什么可以在STM上面跑人工智能?简而言之就是通过X-Cube-AI扩展将当前比较热门的AI框架进行C代码的转化,以支持在嵌入式设备上使用,目前使用X-Cube-AI需要在STM32CubeMX版本7.0以上,目前支持转化的模型有Keras、TF lite、ONNX、Lasagne、Caffe、ConvNetJS。Cube-AI把模型转化为一堆数组,而后将这些数组内容解析成模型,和Tensorflow里的模型转数组后使用原理是一样的。

摘要:为什么可以在STM上面跑人工智能?简而言之就是通过X-Cube-AI扩展将当前比较热门的AI框架进行C代码的转化,以支持在嵌入式设备上使用,目前使用X-Cube-AI需要在STM32CubeMX版本7.0以上,目前支持转化的模型有Keras、TF lite、ONNX、Lasagne、Caffe、ConvNetJS。Cube-AI把模型转化为一堆数组,而后将这些数组内容解析成模型,和Tensorflow里的模型转数组后使用原理是一样的。

一、环境安装和配置

  1. STM32CubeMX
  2. MDK/IAR/STM32CubeIDE
  3. F4/H7/MP157开发板

二、AI神经网络模型搭建

这里使用官方提供的模型进行测试,用keras框架训练:

https://github.com/Shahnawax/HAR-CNN-Keras

模型介绍

在Keras中使用CNN进行人类活动识别:此存储库包含小型项目的代码。该项目的目的是创建一个简单的基于卷积神经网络(CNN)的人类活动识别(HAR)系统。该系统使用来自3D加速度计的传感器数据,并识别用户的活动,例如:前进或后退。HAR意为Human Activity Recognition (HAR) system,即人类行为识别。这个模型是根据人一段时间内的3D加速度数据,来判断人当前的行为,比如走路,跑步,上楼,下楼等,很符合Cortex-M系列MCU的应用场景。使用的数据如下图所示。

HAR用到的原始数据

存储库包含以下文件

  1. HAR.py,Python脚本文件,包含基于CNN的人类活动识别(HAR)模型的Keras实现,
  2. actitracker_raw.txt、包含此实验中使用的数据集的文本文件,
  3. model.h5,一个预训练模型,根据训练数据进行训练,
  4. evaluate_model.py、Python 脚本文件,其中包含评估脚本。此脚本在提供的 testData 上评估预训练 netowrk 的性能,
  5. testData.npy,Python 数据文件,包含用于评估可用预训练模型的测试数据,
  6. groundTruth.npy,Python 数据文件,包含测试数据的相应输出的地面真值和
  7. README.md.

这么多文件不要慌,模型训练后得到model.h5模型,才是我们需要的。

三、新建工程

1.这里默认大家都已经安装好了STM32CubeMX软件。

在STM32上验证神经网络模型(HAR人体活动识别),一般需要STM32F3/F4/L4/F7/L7系列高性能单片机,运行网络模型一般需要3MB以上的闪存空间,一般的单片机不支持这么大的空间,CUBEMX提供了一个压缩率的选项,可以选择合适的压缩率,实际是压缩神经网络模型的权重系数,使得网络模型可以在单片机上运行,压缩率为8,使得模型缩小到366KB,验证可以通过;

然后按照下面的步骤安装好CUBE.AI的扩展包

这个我安装了三个,安装最新版本的一个版本就可以。

接下来就是熟悉得新建工程了

因为安装了AI的包,所以在这个界面会出现artificial intelligence这个选项,点击Enable可以查看哪一些芯片支持AI

接下来就是配置下载接口和外部晶振了。

然后记得要选择一个串口作为调试信息打印输出。

选择Software Packs,进入后把AI相关的两个包点开,第一个打上勾,第一个选择Validation

  • System Performance工程:整个应用程序项目运行在STM32MCU上,可以准确测量NN推理结果,CP∪U负载和内存使用情况。使用串行终端监控结果(e.g.Tera Term)
  • Validation工程:完整的应用程序,在桌面PC和基于STM32 Arm Cortex-m的MCU嵌入式环境中,通过随机或用户测试数据,递增地验证NN返回的结果。与 X-CUBE-A验证工具一起使用。
  • Application Template工程:允许构建应用程序的空模板项目,包括多网络支持。

之后左边栏中的Software Packs点开,选择其中的X-CUBE-AI,弹出的Mode窗口中两个复选框都打勾,Configuration窗口中,点开network选项卡。

选择刚刚配置的串口作为调试用。

点击add network,选择上述下载好的model点h5模型,选择压缩倍数8;

点击分析,可从中看到模型压缩前后的参数对比

点击validation on desktop 在PC上进行模型验证,包括原模型与转换后模型的对比,下方也会现在验证的结果。

致此,模型验证完成,下面开始模型部署

四、模型转换与部署

时钟配置,系统会自动进行时钟配置。按照你单片机的实际选型配置时钟就可以了。

最后点击GENERATE CODE生成工程。

然后在MDK中编译链接。

选择好下载器后就可以下载代码了。

然后打开串口调试助手就可以看到一系列的打印信息了。

代码烧写在芯片里后,回到CubeMX中下图所示位置,我们点击Validate on target,在板上运行验证程序,效果如下图,可以工作,证明模型成功部署在MCU中。

这次就这样先跑一下官方的例程,以后再研究一下,跑跑自己的模型。

参考资料:

关注微信公众号:[果果小师弟],获取更多精彩内容!
智果芯—服务于百万大学生和电子工程师

相关文章
|
28天前
|
传感器 监控 JavaScript
千套单片机\stm32毕设课设题目及资料案列-干货分享
为帮助电子工程领域的学习者顺利毕业或掌握更多专业知识,我们精心整理了一系列单片机和STM32相关的题目及资料案例。这些资源覆盖了从毕业设计到课程设计的各个方面,包括但不限于智能小车、温度控制系统、无线通信、智能家居等多个领域。每项设计都配有详细的原理图、仿真图以及完整的文档资料,旨在帮助学生深入理解理论知识的同时,提高实际动手操作能力。无论是初学者还是有一定基础的学生,都能从中找到适合自己的项目进行实践探索。
95 8
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
47 10
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
深入骨髓的解析:Python中神经网络如何学会‘思考’,解锁AI新纪元
【9月更文挑战第11天】随着科技的发展,人工智能(AI)成为推动社会进步的关键力量,而神经网络作为AI的核心,正以其强大的学习和模式识别能力开启AI新纪元。本文将探讨Python中神经网络的工作原理,并通过示例代码展示其“思考”过程。神经网络模仿生物神经系统,通过加权连接传递信息并优化输出。Python凭借其丰富的科学计算库如TensorFlow和PyTorch,成为神经网络研究的首选语言。
45 1
|
2月前
|
机器学习/深度学习 人工智能 算法
首个像人类一样思考的网络!Nature子刊:AI模拟人类感知决策
【9月更文挑战第8天】近日,《自然》子刊发表的一篇关于RTNet神经网络的论文引起广泛关注。RTNet能模拟人类感知决策思维,其表现与人类相近,在反应时间和准确率上表现出色。这项研究证明了神经网络可模拟人类思维方式,为人工智能发展带来新启示。尽管存在争议,如是否真正理解人类思维机制以及潜在的伦理问题,但RTNet为人工智能技术突破及理解人类思维机制提供了新途径。论文详细内容见《自然》官网。
53 3
|
3月前
|
人工智能 安全 网络安全
网络犯罪分子开始利用AI绕过现代电子邮件安全措施
网络犯罪分子开始利用AI绕过现代电子邮件安全措施
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
40 0
|
3月前
|
人工智能 开发者 芯片
【51单片机】单片机开发者的福音: 让AI看电路图帮你编写程序(使用ChatGPT 中训练好的单片机工程师模型)
使用AI大语言模型编写 单片机程序. 使用的是 OpenAI公司发布的 ChatGPT .在ChatGPT上有别人训练好的 单片机工程师 with Keil uVision 5 - C Code Explainer模型, 可以上传电路图改模型可以通过这个用户所给的电路图进行编程.
201 0
【51单片机】单片机开发者的福音: 让AI看电路图帮你编写程序(使用ChatGPT 中训练好的单片机工程师模型)
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
72 1
|
3月前
|
机器学习/深度学习 人工智能 安全
AI技术在医疗领域的应用及未来展望网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【8月更文挑战第29天】本文主要介绍了AI技术在医疗领域的应用以及未来的发展趋势。文章首先介绍了AI技术的基本概念和发展历程,然后详细介绍了AI技术在医疗领域的具体应用,包括疾病诊断、治疗建议、药物研发等方面。最后,文章对未来AI技术在医疗领域的发展趋势进行了预测和展望。