m基于log-MPA检测算法的SCMA通信链路matlab误码率仿真

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: MATLAB 2022a仿真实现了稀疏码多址接入(SCMA)算法,该算法利用码本稀疏性实现多用户高效接入。每个用户从码本中选取码字发送,接收端采用Log-MPA算法进行多用户检测。由于MAP检测计算复杂度高,故采用Log-MPA降低复杂性。仿真展示了不同迭代次数(1, 5, 10, 30)对误码率(BER)的影响,通过比较各次迭代的BER曲线,研究算法性能与迭代次数的关系。

1.算法仿真效果
matlab2022a仿真结果如下:

b6ac36483a4bdea19b584716bf0b5d3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
稀疏码多址接入(Sparse Code Multiple Access, SCMA)是一种非正交多址接入技术,它通过引入码本的稀疏性来实现多用户的高效接入。在SCMA系统中,多用户共享相同的时频资源,每个用户从自己的码本中选择一个码字进行发送。接收端则采用消息传递算法(Message Passing Algorithm, MPA)或其改进版本log-MPA来进行多用户检测。

   在一个SCMA系统中,假设有J个用户共享K个正交资源元素(如OFDM子载波),且满足J>K。每个用户都有一个预定义的码本,码本中的每个码字都是一个K维的稀疏向量。用户根据自己的数据选择码本中的一个码字进行发送。接收信号可以表示为:

7e6e678d32a0cd04db07d679eae42f2e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在接收端,需要解码多个用户的叠加信号以恢复原始信息。最大后验概率(MAP)检测是最理想的方案,但由于计算复杂度过高,在实际应用中难以实现。因此,采用近似算法,如Log-MAP(Logarithmic Maximum A Posteriori)或Loopy Message Passing Algorithm (Log-MPA),它们能在一定程度上降低复杂性的同时保持良好的性能。

   传统的MPA算法在迭代过程中涉及大量的指数运算和乘法运算,计算复杂度较高。为了降低复杂度,log-MPA算法被提出。log-MPA算法将概率域的计算转换到对数域进行,利用对数域的加法运算来代替概率域的乘法运算,从而减少了计算量。

cb9e2fb3b31d3d0f9b3979b22d7c1916_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    Log-MPA算法不断进行上述消息传递直到收敛或达到预设的最大迭代次数,最后根据各个变量节点的最终消息分布估计用户发送的星座符号。

   log-MPA算法通过将对数似然比的计算转换到对数域进行,显著降低了计算复杂度。然而,这种转换也带来了一定的性能损失。与传统的MPA算法相比,log-MPA算法在误码率(BER)和误帧率(FER)方面可能会有所增加。但是,通过合理的参数选择和迭代次数控制,这种性能损失可以被控制在可接受的范围内。

3.MATLAB核心程序
```for Niter = [1 5 10 30]; % 迭代次数
for k = 1:length(SNR)
%%% 对LLR进行硬判决
datar= LLR';
datar(datar>0)=0;
datar(datar<0)=1;
err = sum(xor(din',datar));
Nerr(:,k,j) = Nerr(:,k,j) + err.';
Nbits(:,k,j) = Nbits(:,k,j) + log2(M)*N;
%%% 计算BER
BER(:,k,j) = Nerr(:,k,j)./Nbits(:,k,j);
end
end

if Niter == 1
    semilogy(EbN0,sum(mean(BER,3)),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
end
hold on;
if Niter == 5
    semilogy(EbN0,sum(mean(BER,3)),'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
end
hold on;
if Niter == 10
    semilogy(EbN0,sum(mean(BER,3)),'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
end
hold on;
if Niter == 30
    semilogy(EbN0,sum(mean(BER,3)),'-k<',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.3,0.3]);

end
hold on;

end
ylabel('BER');
xlabel('Eb/N0(dB)');
grid on;
legend('第1次迭代','第5次迭代','第10次迭代','第30次迭代')
```

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
226 0
|
2月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
158 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
167 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
147 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
138 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
173 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
214 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
149 6