【无人机】基于博弈论的无人机授权应急网络中用户设备关联模拟器附matlab代码

简介: 【无人机】基于博弈论的无人机授权应急网络中用户设备关联模拟器附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

The availability of communication channels able to offer a good level of quality of service is pivotal after theoccurrence of a disaster in order to share critical info or to coordinate search and rescue operations.

With the developments in both Smart City and 5G paradigms new communication opportunities arise thanks to ad-hoc networks among smartphones and surviving IoT devices, cellular networks as well as wireless networks based on vehicles.

With all these opportunities, the choice of the communication medium to use to access the Internet by the user equipment must consider the quality of service achievable through each of them, while reducing the amount of energy consumed for communicating, given that it might not be possible to have access to energy sources.

This work evaluates the adoption of Game Theory to find association strategies that maximize the quality of service perceived in post-disaster scenarios in which UAVs have been deployed to support the cellular network.

⛄ 部分代码

% Add functions to path

addpath('association', 'constants', 'data', 'evaluation', 'disruption', 'performance', 'placement', 'utils');


% Set random number generator seed for reproducibility

% rng(6);


% Definition of the area of interest

vertex_1 = [40.77405, 14.79425];

vertex_2 = [40.76728, 14.80319];


altitude = 280;


origin = [min(vertex_1(1), vertex_2(1)) + (max(vertex_1(1), vertex_2(1)) - min(vertex_1(1), vertex_2(1))) / 2, ...

         min(vertex_1(2), vertex_2(2)) + (max(vertex_1(2), vertex_2(2)) - min(vertex_1(2), vertex_2(2))) / 2, altitude];


% Selection of network operator and technology

radio = ["LTE", "UMTS"];

mcc = 222;

mnc = [10, 6];


fprintf('Getting towers in the area ...');

towers_table = tower_placement(vertex_1, vertex_2, origin, altitude, radio, mcc, mnc);

fprintf('done!\n');


% User placement

number_of_users = 500;


fprintf('Placing users in the area ...');

users_table = user_placement(vertex_1, vertex_2, altitude, number_of_users);

fprintf('done!\n');


% Signal-based user association before disaster

fprintf('Performing signal-based user association before disaster ...');

[base_stations_info_table_sbbd, user_association_table_sbbd] = signal_based_association(users_table, towers_table, empty_uavs_table, true);

user_association_plot(users_table, towers_table, empty_uavs_table, user_association_table_sbbd, 'Signal-based pre-disaster');

fprintf('done!\n');


% Natural disaster simulation

center = [0, 0];

radius = 250;

destruction_probability = 0.4;

damage_probability = 0.8;


fprintf('Simulating disaster ...');

towers_table_ad = natural_disaster(center, radius, destruction_probability, damage_probability, towers_table);

fprintf('done!\n');


% Signal-based user association after disaster without UAVs

fprintf('Performing signal-based user association before disaster ...');

[base_stations_info_table_sbad, user_association_table_sbad] = signal_based_association(users_table, towers_table_ad, empty_uavs_table, true);

user_association_plot(users_table, towers_table_ad, empty_uavs_table, user_association_table_sbad, 'Signal-based post-disaster');

fprintf('done!\n');


% UAV placement

cell_size = 20;

max_uavs = 48;


fprintf('Placing UAVs in the area (this may take a while) ...\n');

uavs_table = uav_placement(vertex_1, vertex_2, origin, altitude, cell_size, max_uavs, users_table, towers_table_ad);


% Signal-based user association after disaster with UAVs deployed

fprintf('Performing signal-based user association after UAV deployment ...');

[base_stations_info_table_sbadwu, user_association_table_sbadwu] = signal_based_association(users_table, towers_table_ad, uavs_table, true);

user_association_plot(users_table, towers_table_ad, uavs_table, user_association_table_sbadwu, 'Signal-based post-disaster with UAVs deployed');

fprintf('done!\n');


% Game-theoretic user association after disaster with UAVs deployed

game_learning_rate = 0.05;


fprintf('Performing game-theoretic user association after UAV deployment ...');

[base_stations_info_table_gtadwu, user_association_table_gtadwu, changes_history] = game_theoretic_association(users_table, towers_table_ad, uavs_table, true, game_learning_rate);

user_association_plot(users_table, towers_table_ad, uavs_table, user_association_table_gtadwu, 'Game-theoretic post-disaster with UAVs deployed');

fprintf('done!\n');


% Plot user throughput distributions

throughput_distributions = [user_association_table_gtadwu.throughput user_association_table_sbadwu.throughput user_association_table_sbad.throughput user_association_table_sbbd.throughput];

labels = {'Ottimizzato', 'Post-disastro con UAV', 'Post-disastro', 'Pre-disastro'};

throughput_distribution_plot(throughput_distributions, labels);


% Plot the number of strategy changes for each round of the game

game_changes_history_plot(changes_history);

⛄ 运行结果

⛄ 参考文献


⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
25天前
|
网络协议 安全 网络安全
|
29天前
|
存储 网络安全 数据安全/隐私保护
|
11天前
|
网络虚拟化 数据安全/隐私保护 数据中心
对比了思科和华为网络设备的基本配置、接口配置、VLAN配置、路由配置、访问控制列表配置及其他重要命令
本文对比了思科和华为网络设备的基本配置、接口配置、VLAN配置、路由配置、访问控制列表配置及其他重要命令,帮助网络工程师更好地理解和使用这两个品牌的产品。通过详细对比,展示了两者的相似之处和差异,强调了持续学习的重要性。
25 2
|
26天前
|
网络协议 Shell 网络安全
解决两个 Android 模拟器之间无法网络通信的问题
让同一个 PC 上运行的两个 Android 模拟器之间能相互通信,出(qiong)差(ren)的智慧。
23 3
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
26天前
|
运维 监控 负载均衡
|
1月前
|
负载均衡 安全 网络安全
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。

热门文章

最新文章