基于顺序模式的度量的多元时间序列非线性分析的Matlab工具箱代码

简介: 基于顺序模式的度量的多元时间序列非线性分析的Matlab工具箱代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

OPA(序数模式分析)工具箱用于多元时间序列的非线性分析,基于序数模式的度量变得越来越流行 [1-5],这些度量可以高效计算 [6,7] 并可视化:-

排列entropy (cfg.method = 'PE') [2]

- 具有并列等级的序数模式的排列熵 (cfg.method = 'eqPE') [4,8]

- 排列熵和序数模式分布 (cfg.method = 'opdPE ') [3]

- 序数模式的条件熵 (cfg.method = 'cePE') [6]

- 稳健的排列熵 (cfg.method = 'rePE') [4,7]

⛄ 部分代码


%% compute permutation entropy in sliding windows

load( 'tonicClonic.mat' );

cfg            = [];

cfg.method     = 'PE'; % compute permutation entropy

cfg.order      = 3;    % ordinal pattens of order 3 (4-points ordinal patterns)

cfg.delay      = 2;    % delay 2 between points in ordinal patterns

                      % (one point between successive points in ordinal patterns)

cfg.windowSize = 512;  % window size = 512 time steps

cfg.time       = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units      = 'seconds';         % OPTIONAL units of time for plotting

outdata        = OPanalysis( cfg, indata );


%% compute permutation entropy and ordinal distributions in sliding windows

load( 'tonicClonic.mat' );

cfg            = [];

cfg.method     = 'opdPE'; % compute permutation entropy

cfg.order      = 3;       % ordinal pattens of order 3 (4-points ordinal patterns)

cfg.orderSeq   = 6;       % ordinal pattens of order 6 for plotting their sequence (7-points ordinal patterns)

cfg.delay      = 1;       % delay 1 between points in ordinal patterns (successive points)

cfg.windowSize = 1024;    % window size = 1024 time steps

cfg.time       = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units      = 'seconds';         % OPTIONAL units of time for plotting

outdata        = OPanalysis( cfg, indata );


%% compute all the implemented measures simultaneously for comparison

load( 'tonicClonic.mat' );

cfg                = [];

cfg.method         = 'all';  % compute all implemented ordinal-patterns-based measures

cfg.order          = 4;      % ordinal patterns of order 4 (5-points ordinal patterns)

cfg.delay          = 1;      % delay 1 between points in ordinal patterns

cfg.windowSize     = 512;    % window size = 512 time steps

cfg.lowerThreshold = 0.2;    % the distance considered negligible between points

cfg.upperThreshold = 200;    % the distance between points most probably related to artifact

cfg.time           = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units          = 'seconds';         % OPTIONAL units of time for plotting

outdata            = OPanalysis( cfg, indata );


%% compute conditional entropy of ordinal patterns in sliding windows

load( 'tonicClonic.mat' );

cfg            = [];

cfg.method     = 'CE'; % we compute conditional entropy of ordinal patterns

cfg.order      = 3;    % ordinal pattens of order 3 (4-points ordinal patterns)

cfg.delay      = 1;    % delay 1 between points in ordinal patterns (successive points)

cfg.windowSize = 512;  % window size = 512 time steps

cfg.time       = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units      = 'seconds';         % OPTIONAL units of time for plotting

outdata        = OPanalysis( cfg, indata );


%% compute robust permutation entropy

load( 'tonicClonic.mat' );

cfg                = [];

cfg.method         = 'rePE'; % compute robust permutation entropy

cfg.order          = 6;      % ordinal patterns of order 6 (7-points ordinal patterns)

cfg.delay          = 1;      % delay 1 between points in ordinal patterns

cfg.windowSize     = 2048;   % window size = 2048 time steps

cfg.lowerThreshold = 0.2;    % the distance that is considered negligible between points

cfg.upperThreshold = 100;    % the distance between points most probably related to artifact

cfg.time           = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units          = 'seconds';         % OPTIONAL units of time for plotting

outdata            = OPanalysis( cfg, indata );


%% compute permutation entropy for ordinal patterns with tied ranks in sliding windows

load( 'tonicClonic.mat' );

cfg            = [];

cfg.method     = 'PEeq'; % compute permutation entropy for ordinal patterns with tied ranks

cfg.order      = 3;      % ordinal pattens of order 3 (4-points ordinal patterns)

cfg.delay      = 3;      % delay 3 between points in ordinal patterns

                        % (2 points between successive points in ordinal patterns)

cfg.windowSize = 1024;   % window size = 1024 time steps

cfg.time       = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units      = 'seconds';         % OPTIONAL units of time for plotting

outdata        = OPanalysis( cfg, indata );


%% compute permutation entropy for several channels

load( 'tonicClonic.mat' );

indata( 2, : )     = rand( 1, length( indata ) );  

cfg                = [];

cfg.method         = 'PE'; % compute robust permutation entropy

cfg.order          = 3;      % ordinal patterns of order 3 (4-points ordinal patterns)

cfg.delay          = 1;      % delay 1 between points in ordinal patterns

cfg.windowSize     = 1024;   % window size = 1024 time steps

cfg.time           = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units          = 'seconds';         % OPTIONAL units of time for plotting

outdata            = OPanalysis( cfg, indata );


%% compute permutation entropy and conditional entropy of ordinal patterns

% for different parameters of logistic map (we use low-level functions for the example)

orbitLength = 10^4;

% take different r values

order       = 7;    % for ordinal pattens of order 7 (8-points ordinal patterns)

delay       = 1;    % for delay 1 (successive points in ordinal patterns)

windowSize  = orbitLength - order*delay;

r           = 3.5:5*10^(-4):4;

peValues    = zeros( 1, length( r ) );

ceValues    = zeros( 1, length( r ) );

leValues    = LEofLogisticMap( 3.5, 4, 5*10^(-4) );

indata      = zeros( 1, orbitLength );

for i = 1:length( r )

 if ( rem( i, 10 ) == 0 )

   disp( [ 'Calculating entropies for r = ' num2str( r( i ) ) ' from 4' ] );

 end

 indata( 1, 1 ) = rand( 1, 1 );

 for j = 2:orbitLength

   indata( j ) = r( i )*indata( j - 1 )*( 1 - indata( j - 1 ) );

 end

 peValues( i ) = PE( indata, delay, order, windowSize );

 ceValues( i ) = CondEn( indata, delay, order, windowSize - delay );

end

figure;

linewidth  = 0.5;

markerSize = 2;

plot( r, leValues, 'k',  'LineWidth',  linewidth ); grid on; hold on;

plot( r, peValues, 'go', 'markerSize', markerSize ); grid on; hold on;

plot( r, ceValues, 'bo', 'markerSize', markerSize ); grid on; hold on;

legend( 'LE', 'PE', 'CE' );

xlabel( 'Values of parameter r for logistic map x(t)=r*x(t-1)*(1-x(t-1))' );


%% INEFFICIENT METHOD: compute permutation entropy in sliding windows with an old method

% just for comparison in terms of speed with fast (PE.m) method

load( 'tonicClonic.mat' );

cfg            = [];

cfg.method     = 'oldPE'; % compute permutation entropy

cfg.order      = 6;       % ordinal pattens of order 6 (7-points ordinal patterns)

cfg.delay      = 1;       % delay 1 between points in ordinal patterns (successive points)

cfg.windowSize = 512;     % window size = 512 time steps

cfg.time       = 0:1/102.4:179.999; % OPTIONAL time axis for plotting

cfg.units      = 'seconds';         % OPTIONAL units of time for plotting

outdata        = OPanalysis( cfg, indata );

⛄ 运行结果

⛄ 参考文献

REFERENCES:

[1] Amigo, J.M., Keller, K. and Unakafova, V.A., 2015. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems-Series B, 20(10).

[2] Bandt C., Pompe B., Permutation entropy: a natural complexity measure for time series. Physical review letters, 2002, APS

[3] Keller, K., and M. Sinn. Ordinal analysis of time series. Physica A: Statistical Mechanics and its Applications 356.1 (2005): 114--120

[4] Keller, K., Unakafov, A.M. and Unakafova, V.A., 2014. Ordinal patterns, entropy, and EEG. Entropy, 16(12), pp.6212-6239.

[5] Zanin, M., Zunino, L., Rosso, O.A. and Papo, D., 2012.

Permutation entropy and its main biomedical and econophysics applications: a review. Entropy, 14(8), pp.1553-1577.

[6] Unakafova, V.A., Keller, K., 2013. Efficiently measuring complexity on the basis of real-world Data. Entropy, 15(10), 4392-4415.

[7] Unakafova, V.A., 2015. Investigating measures of complexity for dynamical systems and for time series (Doctoral dissertation, University of Luebeck).

[8] Bian, C., Qin, C., Ma, Q.D. and Shen, Q., 2012. Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2), p.021906.

[9] Amigo, J.M., Zambrano, S. and Sanjuan, M.A., 2008. Combinatorial detection of determinism in noisy time series. EPL (Europhysics Letters), 83(6), p.60005.

[10] Cao, Y., Tung, W.W., Gao, J.B. et al., 2004. Detecting dynamical changes in time series using the permutation entropy. Physical Review E, 70(4), p.046217.

[11] Riedl, M., Muller, A. and Wessel, N., 2013. Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), pp.249-262

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
16天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
24天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
72 5
|
2月前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
3月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
67 0
|
4月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
4月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章