基于二进制粒子群算法(BPSO)的计算卸载策略求解matlab代码

简介: 基于二进制粒子群算法(BPSO)的计算卸载策略求解matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于移动边缘计算(MEC)环境下的计算卸载技术有效缓解了传统无线网络数据中心的处理压力,提升了系统服务质量.针对计算密集型任务卸载使得移动终端设备能量消耗大的问题,提出了一种基于二进制粒子群算法(BPSO)的计算卸载策略.

⛄ 完整代码

clc

clear

close all


% 初始化种群

narvs = 30;  %解的维数

n = 100;     %粒子的个数100个

x_ub = 10;    

x_lb = -10;  


vmax = 1.2;                  %粒子的最大速度

w = 0.9;                     % 惯性权重

c1 = 2;                      % 每个粒子的个体学习因子,也称为个体加速常数

c2 = 2;                      % 每个粒子的社会学习因子,也称为社会加速常数


%%初始种群

x = randsrc(n,narvs,[0,1;0.5,0.5]);      %设置0和1随机出现的概率均为0.5,x为n行narvs列的矩阵


v = -vmax + 2*vmax .* rand(n,narvs);     %v为n行narvs列的矩阵


s=0;

fitness=zeros(n,1);

for i=1:n

 

  for k=1:30

     f=((1-x(i,k))*10e-26*((rand(1)+1)*5*10^9)^3)+x(i,k)*(0.5*((rand(1)*2+1)/250000))+0.01*(((rand(1)+1)*5*10^9)/(rand(1)*4*10^9));

     s=s+f;

  end

  fit=s;

  fitness(i,1)=fit;

end

fitness;                                 %计算种群初始值

pbest = x;                               % 初始化这n个粒子迄今为止找到的最佳位置(是一个n*narvs的向量),局部最优解

ind = find(fitness == max(fitness), 1);  % 找到适应度最大的那个粒子的下标     find函数:返回fitness函数中前1个非零元素的位置

gbest = x(ind,:);                        % 定义所有粒子迄今为止找到的最佳位置(是一个1*narvs的向量),全局最优解



K=100;                       %迭代次数

fitnessbest=zeros(K,1);      %保存每一代的函数值  ; zeros(K,1)生成一个K行1列的0矩阵

best=0;

bestOne =zeros(1,30);       %  zeros(1,30)生成一个1行10列的0矩阵


for t = 1:K                  %迭代循环100次  

   for i = 1:n

       v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:));

       % 判断速度是否超过限制了(还可以取模)

       for j = 1:narvs

           if v(i,j) < -vmax

               v(i,j) = -vmax;

               

           elseif v(i,j) > vmax

               v(i,j) = vmax;

           end

       end

       x

       v

       %sigmoid函数将例子的速度映射到0-1之间

       vs(i,:)=1./(1+exp(-v(i,:)));

       for j = 1:narvs

           if rand < vs(i,j)

               x(i,j) = 1;

           else

               x(i,j) = 0;

           end

       end

      x

       s=0;

       for k=1:narvs

           f=((1-x(i,k))*10e-26*((rand(1)+1)*5*10^9)^3)+x(i,k)*(0.5*((rand(1)*2+1)/250000))+0.01*(((rand(1)+1)*5*10^9)/(rand(1)*4*10^9));

           s=s+f;

       end

       fit =s;

     

       s=0;

       for k=1:narvs

           f=((1-pbest(i,k))*10e-26*((rand(1)+1)*5*10^9)^3)+pbest(i,k)*(0.5*((rand(1)*2+1)/250000))+0.01*(((rand(1)+1)*5*10^9)/(rand(1)*4*10^9));

           s=s+f;

       end

       fpbest=s;

         

         s=0;

       for k=1:30

           f=((1-gbest(k))*10e-26*((rand(1)+1)*5*10^9)^3)+gbest(k)*(0.5*((rand(1)*2+1)/250000))+0.01*(((rand(1)+1)*5*10^9)/(rand(1)*4*10^9));

           s=s+f;

       end

       fgbest=s;

     

    % 重新计算第i个粒子的适应度

       if fit > fpbest                      % 如果第i个粒子的适应度大于这个粒子迄今为止找到的最佳位置对应的适应度

           pbest(i,:) = x(i,:);                       % 那就更新第i个粒子迄今为止找到的最佳位置(更新局部最优解)

       end

       if  fit > fgbest                                % 如果第i个粒子的适应度大于所有的粒子迄今为止找到的最佳位置对应的适应度

           gbest = pbest(i,:);                        % 那就更新所有粒子迄今为止找到的最佳位置(更新全局最优解)

       end

   end

   h = fgbest;

   if h>best        

       best = h;

       best0ne = gbest;  

   end

   fitnessbest(t,1)=best;

end

bestOne;

figure

plot(1:K,fitnessbest,'-');

grid on;

grid minor;

⛄ 运行结果

⛄ 参考文献

[1]姚玉海, 王增平, 郭昆亚,等. 基于E占优的多目标二进制粒子群算法求解配电网故障恢复[J]. 电力系统保护与控制, 2014, 42(23):6.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
算法
MATLAB符号计算
【10月更文挑战第9天】MATLAB不仅擅长数值计算,还具备强大的符号计算功能,支持代数运算、方程求解、微积分等。本文介绍如何使用MATLAB的符号工具箱进行符号变量定义、方程求解、微分积分及矩阵运算,并通过多个实际应用案例展示了其在机械系统、电路分析、经济优化和物理运动学等领域的应用。此外,文章还提供了符号计算的最佳实践和未来展望。
53 2
|
2月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
14天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
1天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。