边缘计算

首页 标签 边缘计算
# 边缘计算 #
关注
2623内容
|
1天前
|
运维技术深度解析:构建高效、稳定的IT基础设施
【10月更文挑战第22天】运维技术深度解析:构建高效、稳定的IT基础设施
|
1天前
|
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
【大语言模型】ACL2024论文-01 Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language
本文介绍了Quantized Side Tuning(QST)方法,旨在解决大型语言模型(LLMs)微调过程中的内存效率和速度问题。QST通过将模型权重量化为4位,并引入一个与LLM分离的侧网络,显著减少了内存占用并加快了微调速度,同时保持了与现有技术相当的性能。实验表明,QST可以将总内存占用减少高达2.3倍,并将微调速度提高高达3倍。
|
2天前
|
深度学习之自主飞行器导航
基于深度学习的自主飞行器导航是无人驾驶航空器(UAV)和无人机技术的核心研究领域之一。深度学习技术能够提高飞行器在复杂环境中的自主导航能力,实现高效的路径规划、障碍物避让和环境感知。
|
3天前
|
边缘计算和云计算的区别
边缘计算和云计算是两种不同的计算范式。云计算通过互联网提供集中式处理、可扩展性和成本效益等优势,而边缘计算则在数据源附近进行分布式处理,具有低延迟、带宽优化和本地化决策等优点。两者在响应时间、网络带宽和安全性方面有显著区别,常互补使用以满足不同应用场景的需求。
|
5天前
|
高算力服务器的应用场景
【10月更文挑战第18天】高算力服务器作为现代信息社会不可或缺的计算资源,正广泛应用于各行各业。从人工智能到科学研究,从智能交通到数字孪生,它为复杂的计算任务提供了不可替代的支持。
|
5天前
|
构建灵活高效的下一代应用架构 随着企业数字化转型的加速,云原生技术正逐渐成为构建现代化应用程序的关键支柱。
随着企业数字化转型加速,云原生技术逐渐成为构建现代化应用的关键。本文探讨了云原生的核心概念(如容器化、微服务、DevOps)、主要应用场景(如金融、电商、IoT)及未来发展趋势(如无服务器计算、边缘计算、多云架构),并分析了面临的挑战,如架构复杂性和安全问题。云原生技术为企业提供了更灵活、高效的应用架构,助力数字化转型。
智能化运维:AI在IT运维中的应用探索###
随着信息技术的飞速发展,传统的IT运维模式正面临着前所未有的挑战。本文旨在探讨人工智能(AI)技术如何赋能IT运维,通过智能化手段提升运维效率、降低故障率,并为企业带来更加稳定高效的服务体验。我们将从AI运维的概念入手,深入分析其在故障预测、异常检测、自动化处理等方面的应用实践,以及面临的挑战与未来发展趋势。 ###
免费试用